Skip to main content
Log in

Detection of energy levels of a spin system on a quantum computer by probe spin evolution

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We propose a method for detection of energy levels of arbitrary spin system on a quantum computer based on studies of evolution of only one probe spin. On the basis of the proposed method energy levels of spin systems are found on IBM’s quantum computer ibmq-bogota, among them are spin chain in magnetic field, triangle spin cluster, Ising model on squared lattice, a spin in magnetic field. The results of quantum calculations are in agreement with the theoretical ones. The method is efficient for estimation of the energy levels of many-spin systems and opens a possibility to achieve quantum supremacy in solving eigenvalue problem with development of multi-qubit quantum computers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository [Authors’ comment: The data can be found in the text and references of the paper.]

References

  1. A. Kitaev, Quantum Measurements and the Abelian Stabilizer Problem, arXiv:quant-ph/9511026 (1995)

  2. D.S. Abrams, S. Lloyd, Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586 (1997)

    Article  ADS  Google Scholar 

  3. D.S. Abrams, S. Lloyd, Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett. 83, 5162 (1999)

    Article  ADS  Google Scholar 

  4. A.Y. Kitaev, Quantum computations: algorithms and error correction. Russian Math. Surv. 52, 1191 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Dobšíček, G. Johansson, V. Shumeiko, G. Wendin, Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: a two-qubit benchmark. Phys. Rev. A 76, 030306 (2007)

  6. S. Paesani, A.A. Gentile, R. Santagati et al., Experimental bayesian quantum phase estimation on a silicon photonic chip. Phys. Rev. Lett. 118, 100503 (2017)

    Article  ADS  Google Scholar 

  7. J.B. Parker, I. Joseph, Quantum phase estimation for a class of generalized eigenvalue problems. Phys. Rev. A 102, 022422 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  8. P.M.Q. Cruz, G. Catarina, R. Gautier, J. Fernández-Rossier, Optimizing quantum phase estimation for the simulation of Hamiltonian eigenstates. Quantum Sci. Technol. 5, 044005 (2020)

    Article  ADS  Google Scholar 

  9. A.E. Russo, K.M. Rudinger, B.C.A. Morrison, A.D. Baczewski, Evaluating energy differences on a quantum computer with robust phase estimation. Phys. Rev. Lett. 126, 210501 (2021)

    Article  ADS  Google Scholar 

  10. S. Shokri, Sh. Rafibakhsh, R. Pooshgan, R. Faeghi, Implementation of a quantum algorithm to estimate the energy of a particle in a finite square well potential on IBM quantum computer. Eur. Phys. J. Plus 136, 762 (2021)

    Article  Google Scholar 

  11. R.D. Somma, Quantum eigenvalue estimation via time series analysis. New J. Phys. 21, 123025 (2019)

    Article  MathSciNet  Google Scholar 

  12. R. Somma, G. Ortiz, J.E. Gubernatis, E. Knill, R. Laflamme, Simulating physical phenomena by quantum networks. Phys. Rev. A 65, 042323 (2002)

    Article  ADS  Google Scholar 

  13. W.C. Bryce Yoshimura, J.K. Campbell, Diabatic-ramping Freericks, spectroscopy of many-body excited states. Phys. Rev. A 90, 062334 (2014) (Erratum: Phys. Rev. A 96, 039902 (2017))

  14. M. Motta, Ch. Sun, A.T.K. Tan et al., Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16, 205 (2020)

    Article  Google Scholar 

  15. J.-G. Liu, Y.-H. Zhang, Y. Wan, L. Wang, Variational quantum eigensolver with fewer qubits. Phys. Rev. Res. 1, 023025 (2019)

  16. A. Peruzzo, J. McClean, P. Shadbolt et al A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014)

  17. J.R. McClean, J. Romero, R. Babbush, A. Aspuru-Guzik, The theory of variational hybrid quantum-classical algorithms. New. J. Phys. 18, 023023 (2016)

  18. P.J.J. O’Malley, R. Babbush, I.D. Kivlichan, Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016)

  19. R.M. Parrish, E.G. Hohenstein, P.L. McMahon, Quantum computation of electronic transitions using a variational quantum eigensolver. Phys. Rev Lett. 122, 230401 (2019)

  20. E. Farhi, J. Goldstone, S. Gutmann, A Quantum approximate optimization algorithm arXiv:1411.4028 (2014)

  21. E. Farhi, J. Goldstone, S. Gutmann, A Quantum approximate optimization algorithm applied to a bounded occurrence constraint problem. arXiv:1412.6062 (2014)

  22. N. Moll, P. Barkoutsos, L.S. Bishop et al., Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol. 3, 030503 (2018)

  23. F.G. Fuchs, H.O. Kolden, N.H. Aase, G. Sartor, Efficient encoding of the weighted MAX k-CUT on a quantum computer using QAOA SN. Comput. Sci. 2, 89 (2021)

  24. Kh.P. Gnatenko, H.P. Laba, V.M. Tkachuk, Energy levels estimation on a quantum computer by evolution of a physical quantity. Phys. Lett. A 424, 127843 (2022)

  25. H. Nyquist, Certain topics in telegraph transmission theory. AIEE Trans. 47, 617 (1928)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Project 2020.02/0196 (No. 0120U104801) from National Research Foundation of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. P. Gnatenko.

Additional information

Detection of energy levels of a spin system on a quantum computer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnatenko, K.P., Laba, H.P. & Tkachuk, V.M. Detection of energy levels of a spin system on a quantum computer by probe spin evolution. Eur. Phys. J. Plus 137, 522 (2022). https://doi.org/10.1140/epjp/s13360-022-02753-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02753-0

Navigation