Skip to main content
Log in

Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, Cu85Al12Cr3 and Cu83Al12Cr3Ni2 (wt. %) high temperature shape memory alloys (HTSMA) were fabricated from highly pure powder elements by using an arc melter. After production, some pieces of alloys were subjected to heat treatment at 1073K for one hour. Then, Differential Scanning Calorimeter (DSC), Optical Microscopy (OM), X-Ray Diffraction (XRD), Vickers microhardness, and Scanning Electron Microscopy (SEM) analyses were carried out to investigate thermodynamic parameters, microstructure, crystal structure, mechanic properties, and to determine precipitation types in non-heat-treated and heat-treated alloys, respectively. According to the results of DSC measurements, both alloys showed a high temperature shape memory effect; also, the phase transformation temperatures of the alloys were affected by the heat treatment. The analysis of XRD patterns showed two different predominant microstructures in both alloys, i.e.\(\gamma^{\prime}_{1}\) and \(\beta^{\prime}_{1}\) phases. Moreover, microstructural results showed the influence of Ni additive in decreasing the size of the grains and the number of the precipitates. In addition, micro-hardness, as a mechanic property, decreased through adding Ni to the CuAlCr alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.N. Saud et al., Metall. Mater. Trans. A 47, 5242 (2016)

    Article  Google Scholar 

  2. I.N. Qader, M. Kök, F. Dağdelen, Physica B 553, 1 (2018)

    Article  ADS  Google Scholar 

  3. K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, 1999)

  4. F. Dagdelen et al., Mater. Lett. 57, 1079 (2003)

    Article  Google Scholar 

  5. Y. Aydoğdu et al., J. Phys.: Conf. Ser. 667, 012010 (2016)

    Google Scholar 

  6. R. Dasgupta et al., J. Mater. Res. Technol. 3, 264 (2014)

    Article  Google Scholar 

  7. G. Firstov, J. Van Humbeeck, Y.N. Koval, J. Intell. Mater. Syst. Struct. 17, 1041 (2006)

    Article  Google Scholar 

  8. D. Stoeckel, Mater. Design 11, 302 (1990)

    Article  Google Scholar 

  9. S.N. Saud et al., J. Therm. Anal. Calorim. 118, 111 (2014)

    Article  Google Scholar 

  10. S. Saud et al., Trans. Nonferr. Metals Soc. China 25, 1158 (2015)

    Article  Google Scholar 

  11. W.Y. Ci et al., J. Mech. Eng. Sci. 11, 2770 (2017)

    Article  Google Scholar 

  12. S.N. Saud et al., J. Alloys Compd. 612, 471 (2014)

    Article  Google Scholar 

  13. S.N. Saud et al., J. Therm. Anal. Calorim. 119, 1273 (2015)

    Article  Google Scholar 

  14. S. Vajpai, R. Dube, S. Sangal, Mater. Sci. Eng. A 570, 32 (2013)

    Article  Google Scholar 

  15. M.A.K. Al-Dalawi, Fabrication of Cu Based HTSMAs and Investigation of Their Physical Properties, in Physics (Firat University, 2017)

  16. F. Dağdelen et al., Eur. Phys. J. Plus 131, 196 (2016)

    Article  Google Scholar 

  17. S. Buytoz et al., J. Therm. Anal. Calorim. 117, 1277 (2014)

    Article  Google Scholar 

  18. I. Somunkiran, S. Buytoz, F. Dagdelen, J. Alloys Compd. 777, 302 (2019)

    Article  Google Scholar 

  19. M. Zare, M. Ketabchi, J. Therm. Anal. Calorim. 127, 2113 (2017)

    Article  Google Scholar 

  20. A. Pandey et al., Metall. Mater. Trans. B 47, 2205 (2016)

    Article  Google Scholar 

  21. C. Wang et al., Smart Mater. Struct. 23, 025018 (2013)

    Article  ADS  Google Scholar 

  22. S.N. Balo, N. Sel, Thermochim. Acta 536, 1 (2012)

    Article  Google Scholar 

  23. Y. Sutou et al., Acta Mater. 57, 5759 (2009)

    Article  Google Scholar 

  24. N. Suresh, U. Ramamurty, Mater. Sci. Eng. A 454, 492 (2007)

    Article  Google Scholar 

  25. U. Sari et al., Int. J. Miner., Metall., Mater. 18, 430 (2011)

    Article  Google Scholar 

  26. N. Suresh, U. Ramamurty, J. Alloys Compd. 449, 113 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dagdelen.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagdelen, F., Aldalawi, M.A.K., Kok, M. et al. Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. Eur. Phys. J. Plus 134, 66 (2019). https://doi.org/10.1140/epjp/i2019-12479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12479-3

Navigation