Skip to main content
Log in

Influence of a magnetic field on the flow of a micropolar fluid sandwiched between two Newtonian fluid layers through a porous medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The present paper is concerned with the flow of a micropolar/Eringen fluid sandwiched between two Newtonian fluid layers through a horizontal porous channel. The flow in both regions is steady, incompressible and the fluids are immiscible. The flow is driven by a constant pressure gradient and a magnetic field of uniform strength is applied in the direction perpendicular to the flow. The flow of electrically conducting fluids, in the three regions, is governed by the Brinkman equation with the assumption that the effective viscosity of each fluid is the same as the viscosity of the fluid. No-slip conditions at the end of the plates, continuity of velocity, continuity of shearing stress and constant rotational velocity at the interface have been used as the boundary conditions to get the solution of the considered problem. The numerical values of the solution obtained are used to analyse graphically the effect of various transport parameters, such as permeability of the porous region, magnetic number, viscosity ratio, etc., on the velocity profile and microrotational velocity profile. Also, the variations in the flow rate and the wall shear stress with respect to the governing parameters are presented in tabular form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.K. Yadav, Eur. Phys. J. Plus 133, 1 (2018)

    Article  Google Scholar 

  2. I. Ansari, S. Deo, Natl. Acad. Sci. Lett. 40, 211 (2017)

    Article  Google Scholar 

  3. P.K. Yadav, S. Jaiswal, B.D. Sharma, Appl. Math. Mech. 39, 993 (2018)

    Article  Google Scholar 

  4. P.K. Yadav, S. Jaiswal, Can. J. Phys. https://doi.org/10.1139/cjp-2017-0998 (2018)

  5. A.C. Eringen, Int. J. Eng. Sci. 2, 205 (1964)

    Article  Google Scholar 

  6. A.C. Eringen, J. Math. Mech. 16, 1 (1966)

    MathSciNet  Google Scholar 

  7. M.M. Khonsari, D.E. Brewe, ASLE Tribol. Trans. 32, 155 (1989)

    Article  Google Scholar 

  8. M.M. Khonsari, Acta Mech. 81, 235 (1990)

    Article  Google Scholar 

  9. H. Busuke, T. Tatsuo, Int. J. Eng. Sci. 7, 515 (1969)

    Article  Google Scholar 

  10. J.D. Lee, A.C. Eringen, J. Chem. Phys. 55, 4509 (1971)

    Article  ADS  Google Scholar 

  11. F.E. Lockwood, M.T. Benchaita, S.E. Friberg, ASLE Trans. 30, 539 (1986)

    Article  Google Scholar 

  12. T. Ariman, M.A. Turk, N.D. Sylvester, Int. J. Eng. Sci. 11, 905 (1973)

    Article  Google Scholar 

  13. T. Ariman, M.A. Turk, N.D. Sylvester, Int. J. Eng. Sci. 12, 273 (1974)

    Article  Google Scholar 

  14. G. Lukaszewicz, Micropolar fluids: Theory and Applications (Springer Science Business Media, 1999)

  15. A.C. Eringen, Microcontinuum field theories: II Fluent media (Springer Science Business Media, 2001)

  16. L. Bayliss, in Deformation and Flow in Biological Systems, edited by A. Frey-Wissling, (North Holland Publishing Co., Amsterdam, 1952)

  17. Y.C. Fung, Federation Proc. 25, 1761 (1966)

    Google Scholar 

  18. H.S. Lew, Y.C. Fung, J. Biomech. 3, 23 (1970)

    Article  Google Scholar 

  19. G. Bugliarello, J. Sevilla, Biorheology 7, 85 (1970)

    Article  Google Scholar 

  20. H.L. Goldsmith, R. Skalak, Annu. Rev. Fluid Mech. 7, 213 (1975)

    Article  ADS  Google Scholar 

  21. T. Ariman, M.A. Turk, N.D. Sylvester, J. Appl. Mech. 41, 1 (1974)

    Article  ADS  Google Scholar 

  22. M.A. Ikbal, S. Chakravarty, P.K. Mandal, Comput. Math. Appl. 58, 1328 (2009)

    Article  MathSciNet  Google Scholar 

  23. A.J. Chamkha, J.C. Umavathi, A. Mateen, Int. J. Fluid Mech. Res. 31, 13 (2004)

    Article  Google Scholar 

  24. S.I. Bakhtiyarov, D.A. Siginer, A note on the laminar core-annular flow of two immiscible fluids in a horizontal tube, in Proceedings of the International Symposium on Liquid-Liquid Two Phase Flow and Transport Phenomena (Begell house, Inc., Santa Barbara, 1997) pp. 107--111

  25. J.C. Umavathi, A.J. Chamkha, M.H. Manjula, A. Al-Mudhaf, Can. J. Phys. 83, 705 (2005)

    Article  ADS  Google Scholar 

  26. J.C. Umavathi, I.C. Liu, J. Prathap-Kumar, D. Shaik-Meera, Appl. Math. Mech. 31, 1497 (2010)

    Article  Google Scholar 

  27. M.S. Malashetty, J.C. Umavathi, J. Prathap Kumar, Heat Mass Transf. 42, 977 (2006)

    Article  ADS  Google Scholar 

  28. J.P. Kumar, J.C. Umavathi, A.J. Chamkha, I. Pop, Appl. Math. Model. 34, 1175 (2010)

    Article  MathSciNet  Google Scholar 

  29. J. Lohrasbi, V. Sahai, Appl. Sci. Res. 45, 53 (1988)

    Article  Google Scholar 

  30. M.S. Malashetty, V. Leela, Int. J. Eng. Sci. 30, 371 (1992)

    Article  Google Scholar 

  31. M.S. Malashetty, J.C. Umavathi, Int. J. Multiphase Flow. 23, 545 (1997)

    Article  Google Scholar 

  32. A.J. Chamkha, J. Fluids Eng. 122, 117 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar Yadav, P., Jaiswal, S., Asim, T. et al. Influence of a magnetic field on the flow of a micropolar fluid sandwiched between two Newtonian fluid layers through a porous medium. Eur. Phys. J. Plus 133, 247 (2018). https://doi.org/10.1140/epjp/i2018-12071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12071-5

Navigation