Skip to main content
Log in

Entropy generation in hydromagnetic boundary flow under the effects of frictional and Joule heating: Exact solutions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The objective of the present article is to discuss the effects of viscous dissipation and Joule heating on entropy generation in a hydromagnetic boundary layer flow. Governing equations are reduced to self-similar equations via suitable similarity transformations. The expressions for the volumetric entropy generation rate and the Bejan number are also obtained using similarity transformations. The exact solution of the transformed energy equation is computed using the Laplace transform treatment. The obtained exact solutions are utilized to calculate the entropy generation number and the Bejan number. The impacts of Prandtl number, viscous dissipation parameter (Eckert number), magnetic parameter, mass suction and temperature difference parameter on entropy generation and Bejan number are discussed graphically. The increasing value of the temperature difference parameter reduces the entropy generation. The entropy generation increases with the increasing values of the magnetic parameter, the Eckert number, the mass suction parameter and the Prandtl number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Hussanan, M.Z. Salleh, I. Khan, S. Shafie, J. Mol. Liq. 229, 482 (2017)

    Article  Google Scholar 

  2. S. Das, R.N. Jana, O.D. Makinde, Alex. Eng. J. 55, 253 (2016)

    Article  Google Scholar 

  3. S. Aman, I. Khan, Z. Ismail, M.Z. Salleh, Neural Comput. Appl. (2016) DOI: 10.1007/s00521-016-2688-7

  4. I. Khan, F. Ali, N. Mustapha, S. Shafie, Bound. Value Probl. 2015, 8 (2015)

    Article  Google Scholar 

  5. L.J. Crane, Z. Angew. Math. Phys. 4, 645 (1970)

    Article  Google Scholar 

  6. E.H. Aly, A. Ebaid, J. Comput. Theor. Nanosci. 10, 2591 (2013)

    Article  Google Scholar 

  7. T. Fang, J. Zhang, S. Yao, Commun. Nonlinear Sci. Numer. Simul. 14, 3731 (2009)

    Article  ADS  Google Scholar 

  8. T. Fang, J. Zhang, Commun. Nonlinear Sci. Numer. Simul. 14, 2853 (2009)

    Article  ADS  Google Scholar 

  9. E.M.A. Elbashbeshy, T.G. Emam, M.S.A. Wahed, Heat Mass Transf. 50, 57 (2014)

    Article  ADS  Google Scholar 

  10. M. Turkyilmazoglu, Int. J. Heat Mass Transfer 106, 127 (2017)

    Article  Google Scholar 

  11. M. Turkyilmazoglu, J. Thermophys. Heat Transf. 25, 595 (2011)

    Article  Google Scholar 

  12. Z.H. Khan, M. Qasim, N. Ishfaq, W.A. Khan, Commun. Theor. Phys. 67, 449 (2017)

    Article  ADS  Google Scholar 

  13. M.Z. Salleh, R. Nazar, I. Pop, J. Taiwan Inst. Chem. Eng. 41, 651 (2010)

    Article  Google Scholar 

  14. M. Qasim, S. Noreen, Eur. Phys. J. Plus 129, 7 (2014)

    Article  Google Scholar 

  15. A.B. Parsa, M.M. Rashidi, O.A. Beg, S.M. Sadr, Comput. Biol. Med. 43, 1142 (2013)

    Article  Google Scholar 

  16. M.M. Rashidi, E. Momoniat, B. Rostami, J. Appl. Math. 2012, 780415 (2012)

    Article  Google Scholar 

  17. O.A. Beg, M.M. Rashidi, T.A. Beg, M. Asadi, J. Mech. Med. Biol. 12, 1250051 (2012)

    Article  Google Scholar 

  18. A.J. Chamkha, A.M. Aly, Z.A.S. Raizah, Appl. Comput. Math. 6, 34 (2017)

    Article  Google Scholar 

  19. K. Vajravelu, K.V. Prasad, Chiu-On Ng, H. Vaidya, Int. J. Appl. Comput. Math. (2016) DOI: 10.1007/s40819-016-0291-3

  20. O.A. Beg, M.J. Uddin, M.M. Rashidi, N. Kavyani, J. Eng. Thermophys. 23, 79 (2014)

    Article  Google Scholar 

  21. B. Ganga, S.M.Y. Ansari, N.V. Ganesh, A.K.A. Hakeem, J. Heat Mass Transf. 3, 153 (2016)

    Google Scholar 

  22. K.L. Hsiao, Appl. Therm. Eng. 98, 850 (2016)

    Article  Google Scholar 

  23. A. Bejan, J. Heat Transf. 101, 718 (1979)

    Article  Google Scholar 

  24. A. Bejan, Heat Fluid Flow 8, 258 (1987)

    Article  Google Scholar 

  25. A.S. Butt, A. Ali, A. Mehmood, Int. J. Exergy 20, 318 (2016)

    Article  Google Scholar 

  26. S. Das, S. Chakraborty, R.N. Jana, O.D. Makinde, Appl. Math. Mech. 36, 1593 (2015)

    Article  Google Scholar 

  27. A.K.A. Hakeem, M. Govindaraju, B. Ganga, M. Kayalvizhi, Sci. Iran. 23, 1524 (2016)

    Google Scholar 

  28. M.M. Rashidi, N. Freidoonimehr, Int. J. Comput. Methods Eng. Sci. Mech. 15, 345 (2014)

    Article  MathSciNet  Google Scholar 

  29. O.D. Makinde, Int. J. Exergy 10, 142 (2012)

    Article  Google Scholar 

  30. M.M. Rashidi, F. Mohammadi, S. Abbasbandy, M.S. Alhuthali, J. Appl. Fluid Mech. 8, 753 (2015)

    Article  Google Scholar 

  31. S. Das, R.N. Jana, O.D. Makinde, J. Heat Mass Transf. Res. 2, 51 (2015)

    Google Scholar 

  32. A. Khan, I. Khan, F. Ali, S. Shafie, J. Porous Media 19, 175 (2016)

    Article  Google Scholar 

  33. M. Govindaraju, B. Ganga, A.K.A. Hakeem, Front. Heat Mass Transf. 8, 1 (2017)

    Google Scholar 

  34. M. Mushtaq, S. Asghar, M.A. Hussain, Heat Mass Transf. 15, 137 (2011)

    Google Scholar 

  35. M.I. Afridi, M. Qasim, I. Khan, S. Shafie, A.S. Alshomrani, Entropy 19, 1 (2017)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharidan Shafie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afridi, M.I., Qasim, M. & Shafie, S. Entropy generation in hydromagnetic boundary flow under the effects of frictional and Joule heating: Exact solutions. Eur. Phys. J. Plus 132, 404 (2017). https://doi.org/10.1140/epjp/i2017-11704-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11704-5

Navigation