Skip to main content

Advertisement

Log in

QCD nature of dark energy at finite temperature: Cosmological implications

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The Veneziano ghost field has been proposed as an alternative source of dark energy, whose energy density is consistent with the cosmological observations. In this model, the energy density of the QCD ghost field is expressed in terms of QCD degrees of freedom at zero temperature. We extend this model to finite temperature to search the model predictions from late time to early universe. We depict the variations of QCD parameters entering the calculations, dark energy density, equation of state, Hubble and deceleration parameters on temperature from zero to a critical temperature. We compare our results with the observations and theoretical predictions existing at different eras. It is found that this model safely defines the universe from quark condensation up to now and its predictions are not in tension with those of the standard cosmology. The EoS parameter of dark energy is dynamical and evolves from -1/3 in the presence of radiation to -1 at late time. The finite temperature ghost dark energy predictions on the Hubble parameter well fit to those of \( \Lambda\) CDM and observations at late time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Supernova Cosmology Project Collaboration (S. Perlmutter et al.), Astrophys. J. 517, 565586 (1999) arXiv:astro-ph/9812133

    Google Scholar 

  2. Supernova Search Team Collaboration (A.G. Riess et al.), Astron. J. 116, 1009 (1998) arXiv:astro-ph/9805201

    Article  Google Scholar 

  3. A.G. Riess et al., Astrophys. J. 607, 665 (2004) arXiv:astro-ph/0402512

    Article  ADS  Google Scholar 

  4. Supernova Cosmology Project Collaboration (M. Kowalski et al.), Astrophys. J. 686, 749 (2008) arXiv:0804.4142 [astro-ph]

    Article  Google Scholar 

  5. WMAP Collaboration (E. Komatsu et al.), Astrophys. J. Suppl. 180, 330 (2009) arXiv:0803.0547 [astro-ph]

    Article  Google Scholar 

  6. D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003) arXiv:astro-ph/0302225

    Article  ADS  Google Scholar 

  7. WMAP Collaboration (D.N. Spergel et al.), Astrophys. J. Suppl. 170, 377 (2007) arXiv:astro-ph/0603452

    Article  Google Scholar 

  8. M. Tegmark et al., Phys. Rev. D 69, 103501 (2004) arXiv:astro-ph/0310723

    Article  ADS  Google Scholar 

  9. F.R. Urban, A.R. Zhitnitsky, Phys. Lett. B 688, 9 (2010) arXiv:0906.2162[gr-qc]

    Article  ADS  Google Scholar 

  10. F.R. Urban, A.R. Zhitnitsky, Phys. Rev. D 80, 063001 (2009) arXiv:0906.2165 [hep-th]

    Article  ADS  Google Scholar 

  11. F.R. Urban, A.R. Zhitnitsky, JCAP 09, 018 (2009) arXiv:0906.3546 [astro-ph.CO]

    Article  ADS  Google Scholar 

  12. F.R. Urban, A.R. Zhitnitsky, Nucl. Phys. B 835, 135 (2010) arXiv:0909.2684 [astro-ph.CO]

    Article  ADS  Google Scholar 

  13. G. Veneziano, Nucl. Phys. B 159, 213 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  14. G.M. Shore, Lect. Notes Phys. 737, 235 (2008) arxiv:hep-ph/0701171

    Article  ADS  MathSciNet  Google Scholar 

  15. D.J. Schwarz, Nucl. Phys. A 642, 336 (1998) arXiv:hep-ph/9807473

    Article  ADS  Google Scholar 

  16. E.C. Thomas, F.R. Urban, A.R. Zhitnitsky, JHEP 08, 043 (2009) arXiv:0904.3779 [gr-qc]

    Article  ADS  Google Scholar 

  17. S.M. Sanches Jr., F.S. Navarra, D.A. Fogaça, Nucl. Phys. A 937, 1 (2015) arXiv:1410.3893 [hep-ph]

    Article  ADS  Google Scholar 

  18. E. Witten, Nucl. Phys. B 156, 269 (1979)

    Article  ADS  Google Scholar 

  19. E. Witten, Ann. Phys. 128, 363 (1980)

    Article  ADS  Google Scholar 

  20. P. Di Vecchia, G. Veneziano, Nucl. Phys. B 171, 253 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  21. P.M. Vaudrevange, G.D. Starkman, N.J. Cornish, D.N. Spergel, Phys. Rev. D 86, 083526 (2012) arXiv:1206.2939 [astro-ph.CO]

    Article  ADS  Google Scholar 

  22. G. Aslanyan, A.V. Manohar, A.P.S. Yadav, JCAP 08, 009 (2013) arXiv:1304.1811 [astro-ph.CO]

    Article  ADS  Google Scholar 

  23. Planck Collaboration (P.A.R. Ade), Planck 2015 results. XVIII. Background geometry and topology, arXiv:1502.01593 [astro-ph.CO]

  24. Particle Data Group (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014) and 2015 update

    Article  Google Scholar 

  25. A. Ayala, A. Bashir, C.A. Dominguez, E. Gutierrez, M. Loewe, A. Raya, Phys. Rev. D 84, 056004 (2011) arXiv:1106.5155 [hep-ph]

    Article  ADS  Google Scholar 

  26. A. Bazavov et al., Phys. Rev. D 80, 014504 (2009) arXiv:0903.4379 [hep-lat]

    Article  ADS  Google Scholar 

  27. M. Cheng et al., Phys. Rev. D 81, 054504 (2010) arXiv:0911.2215 [hep-lat]

    Article  ADS  Google Scholar 

  28. S. Hioki, Possible evidence for the mass shift of $\eta{\prime}$ meson at finite temperature, arXiv:hep-lat/9702007

  29. A. Ayala, C.A. Dominguez, M. Loewe, Y. Zhang, Phys. Rev. D 86, 114036 (2012) arXiv:1210.2588 [hep-ph]

    Article  ADS  Google Scholar 

  30. R.G. Cai, Z.L. Tuo, H.B. Zhang, Q. Su, Phys. Rev. D 84, 123501 (2011) arXiv:1011.3212 [astro-ph.CO]

    Article  ADS  Google Scholar 

  31. Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. A 571, 16 (2014) arXiv:1303.5076 [astro-ph.CO]

    Article  ADS  Google Scholar 

  32. BOSS Collaboration (E. Aubourg et al.), Phys. Rev. D 92, 123 516 (2015) arXiv:1411.1074 [astro-ph.CO]

    Article  Google Scholar 

  33. R.A. Battye, M. Bucher, D. Spergel, Domain Wall Dominated Universes, arXiv:astro-ph/9908047

  34. L. Conversi, A. Melchiorri, L. Mersini, J. Silk, Astropart. Phys. 21, 443 (2004)

    Article  ADS  Google Scholar 

  35. A. Mithani, A. Vilenkin, Did the universe have a beginning?, arXiv:1204.4658

  36. Ö. Akarsu, T. Dereli, J.A. Vazquez, JCAP 06, 049 (2015) arXiv:1501.07598 [astro-ph.CO]

    Article  ADS  Google Scholar 

  37. V. Sahni, A. Shafieloo, A.A. Starobinsky, Astrophys. J. 793, 40 (2014) arXiv:1406.2209 [astro-ph.CO]

    Article  ADS  Google Scholar 

  38. T. Delubac et al., Astron. Astrophys. 574, 59 (2015) arXiv:1404.1801 [astro-ph.CO]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Azizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, K., Katırcı, N. QCD nature of dark energy at finite temperature: Cosmological implications. Eur. Phys. J. Plus 131, 163 (2016). https://doi.org/10.1140/epjp/i2016-16163-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16163-x

Keywords

Navigation