Skip to main content
Log in

A general analytical solution for the variance-to-mean Feynman-alpha formulas for a two-group two-point, a two-group one-point and a one-group two-point cases

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This paper presents a full derivation of the variance-to-mean or Feynman-alpha formula in a two-energy-group and two-spatial-region treatment. The derivation is based on the Chapman-Kolmogorov equation with the inclusion of all possible neutron reactions and passage intensities between the two regions. In addition, the two-group one-region and the two-region one-group Feynman-alpha formulas, treated earlier in the literature for special cases, are extended for further types and positions of detectors. We focus on the possibility of using these theories for accelerator-driven systems and applications in the safeguards domain, such as the differential self-interrogation method and the differential die-away method. This is due to the fact that the predictions from the models which are currently used do not fully describe all the effects in the heavily reflected fast or thermal systems. Therefore, in conclusion, a comparative study of the two-group two-region, the two-group one-region, the one-group two-region and the one-group one-region Feynman-alpha models is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Fermi, R.P. Feynman, F. de Hoffmann, Theory of the Criticality of the Water Boiler and the Determination of the Number of Delayed Neutrons, USAEC Report MDDC-383 (LADC-269) Los Alamos Scientific Laboratory (1944)

  2. F. de Hoffmann, Intensity Fluctuations of a Neutron Chain Reaction, USAEC Report MDDC-382 (LADC-256) Los Alamos Scientific Laboratory (1946)

  3. R.P. Feynman, F. de Hoffmann, R. Serber, J. Nucl. Energy 3, 64 (1956)

    Google Scholar 

  4. I. Pázsit, L. Pál, Neutron Fluctuations: A Treatise on the Physics of Branching Processes (Elsevier Science Ltd., London, New York, Tokyo, 2008)

  5. H. Kiyavitskaya, YALINA-Booster Benchmark Specifications for the IAEA Coordinated Research Projects on Analytical and Experimental Benchmark Analysis on Accelerator Driven Systems and Low Enriched Uranium Fuel Utilization in Accelerator Driven Sub-Critical Assembly Systems, (IAEA, Vienna, 2007)

  6. Y. Gohar, D.L. Smith, Report YALINA Facility, A Sub-Critical Accelerator-Driven System (ADS) for Nuclear Energy Research. Facility Description and Overview of the Research Program, Argonne National Laboratory, ANL-10/05 (2010)

  7. A. Talamo, Y. Gohar, Deterministic and Monte Carlo Modeling of YALINA Thermal Subcritical Assembly, Argonne National Laboratory, ANL-10/17 (2010)

  8. R. Soule, W. Assal, P. Chaussonnet et al., Nucl. Sci. Eng. 148, 124 (2004)

    Article  Google Scholar 

  9. A. Kochetkov, Current progress and future plans of the FREYA Project, in Proceedings of the International Conference on Technology and Components of Accelerator Driven Systems (TSADS-2), Nantes, France (2013)

  10. P. Cartemo, A. Nordlund, D. Chernikova, Sensitivity of the neutronic design of an Accelerator-Driven System (ADS) to the anisotropy of yield of the neutron generator and variation of nuclear data libraries, ESARDA meeting, Brugge (2013)

  11. J.-L. Munoz-Cobo, C. Berglof, J. Pena, D. Villamarin, V. Bournos, Ann. Nucl. Energy 38, 194 (2011)

    Article  Google Scholar 

  12. C. Berglof, M. Fernandez-Ordonez, D. Villamarin et al., Ann. Nucl. Energy 38, 590 (2011)

    Article  Google Scholar 

  13. T. Ye, in Proceedings of the 2006 Symposium on nuclear data, Japan (2006)

  14. G.D. Spriggs, Ann. Nucl. Energy 24, 205 (1997)

    Article  Google Scholar 

  15. Y.S. Rana, S.B. Degweker, Nucl. Sci. Eng. 162, 117 (2009)

    Article  Google Scholar 

  16. Y.S. Rana, S.B. Degweker, Nucl. Sci. Eng 169, 98 (2011)

    Google Scholar 

  17. S.B. Degweker, Ann. Nucl. Energy 27, 1245 (2000)

    Article  Google Scholar 

  18. Y. Yamane, A. Uritani, K. Ishitani, H. Kataoka, S. Shiroya, C. Ichihara, K. Kobayashi, S. Okajima, Experimental study on reactor dynamics of accelerator driven subcritical system, KURRI Progress Report, Vol. 46 (Research Reactor Institute, Kyoto University, 1999) (2000)

  19. Y. Yamane, A. Uritani, H. Kataoka, T. Nomura, M. Matsui, R. Naka, A. Tabuchi, T. Hayashi, H. Yamauchi, Y. Kitamura, S. Shiroya, T. Misawa, K. Kobayashi, C. Ichihara, H. Unesaki, H. Nakamura, Experimental study on reactor dynamics of accelerator driven subcritical system (II), KURRI Progress Report, Vol. 53 (Research Reactor Institute, Kyoto University, 2001)

  20. Y. Yamane, Y. Kitamura, H. Kataoka, K. Ishitani, S. Shiroya, in Proceedings of PHYSOR-2002 International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing (Seoul, Korea, 2002)

  21. Y. Kitamura, H. Yamauchi, Y. Yamane, Ann. Nucl. Energy 30, 897 (2003)

    Article  Google Scholar 

  22. Y. Kitamura, H. Yamauchi, Y. Yamane, T. Misawa, C. Ichihara, H. Nakamura, Ann. Nucl. Energy 31, 163 (2004)

    Article  Google Scholar 

  23. Y. Kitamura, K. Taguchi, A. Yamamoto, Y. Yamane, T. Misawa, C. Ichihara, H. Nakamura, H. Oigawa, Int. J. Nucl. Energy Sci. Technol. 2, 266 (2006)

    Article  Google Scholar 

  24. Y. Kitamura, I. Pázsit, J. Wright, A. Yamamoto, Y. Yamane, Ann. Nucl. Energy 32, 671 (2005)

    Article  Google Scholar 

  25. J.L. Munoz-Cobo, Y. Rugama, T.E. Valentine, J.T. Michalzo, R.B. Perez, Ann. Nucl. Energy 28, 1519 (2001)

    Article  Google Scholar 

  26. S.B. Degweker, Ann. Nucl. Energy 30, 223 (2003)

    Article  Google Scholar 

  27. M. Ceder, I. Pázsit, Prog. Nucl. Energy 43, 429 (2003)

    Article  Google Scholar 

  28. I. Pázsit, M. Ceder, Z. Kuang, Nucl. Sci. Eng. 148, 67 (2004)

    Google Scholar 

  29. S. Croft, A. Favalli, D.K. Hauck, D. Henzlova, P.A. Santi, Nucl. Instrum. Methods A 686, 136 (2012)

    Article  ADS  Google Scholar 

  30. H.O. Menlove, S.H. Menlove, S.T. Tobin, Nucl. Instrum. Methods A 602, 588 (2009)

    Article  ADS  Google Scholar 

  31. J. Anderson, L. Pál, I. Pázsit, D. Chernikova, S. Pozzi, Eur. Phys. J. Plus 127, 21 (2012)

    Article  ADS  Google Scholar 

  32. L. Pál, I. Pázsit, Sci. Technol. Nucl. Install. , (2012)

  33. T. Yamamoto, Ann. Nucl. Energy 57, 84 (2013)

    Article  Google Scholar 

  34. G. Chapline, in Proceedings of 15th International Conference on Emerging nuclear Energy systems (San Francisco, 2011)

  35. J. Anderson, D. Chernikova, I. Pázsit, L. Pál, S.A. Pozzi, Eur. Phys. J. Plus 127, 90 (2012)

    Article  Google Scholar 

  36. A. Kolmogorov, Uber die analytischen Methoden in der Wahrscheinlichkeitsrechnung (1931)

  37. Wolfram Research, Inc., Mathematica, Version 10.0 (Champaign, IL, 2014)

  38. D. Chernikova, I. Pázsit, W. Ziguan, in Proceedings of ESARDA meeting (2013)

  39. D. Chernikova, I. Pázsit, L. Pál, W. Ziguan, in Proceedings of INMM meeting (2013)

  40. D.B. Pelowitz, MCNPX User’s Manual, Version 2.7.0, Los Alamos National Laboratory report LA-CP-11-00438, April (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Chernikova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernikova, D., Ziguan, W., Pázsit, I. et al. A general analytical solution for the variance-to-mean Feynman-alpha formulas for a two-group two-point, a two-group one-point and a one-group two-point cases. Eur. Phys. J. Plus 129, 259 (2014). https://doi.org/10.1140/epjp/i2014-14259-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14259-y

Navigation