Skip to main content
Log in

Peristaltic flow of a tangent hyperbolic fluid with convective boundary condition

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present work deals with the peristaltic flow of a tangent hyperbolic fluid in an asymmetric channel. The flow equations have been derived for the tangent hyperbolic fluid. Analysis has been done in the presence of convected boundary condition. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and then tackled analytically using the perturbation technique. The main focus has been given to the effects of the Biot number, the power law index and the Weissenberg number. Graphical results for velocity, temperature, pressure rise and trapping are obtained and analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C′:

specific heat

Q 0 :

constant heat absorption parameter

B i :

Biot number

K′:

thermal conductivity

σ :

electrical conductivity

\(\bar S\) :

extra stress tensor

g :

gravitation due to acceleration

M :

Hartmann number

μ :

infinite shear rate viscosity

μ 0 :

zero shear rate viscosity

φ :

phase difference

Ψ :

stream function

P r :

Prandtl number

c :

wave speed

\(\dot \gamma\) :

shear rate

Γ :

time constant

h f :

convective heat transfer

t :

time

λ:

wavelength

T :

local fluid temperature

T 0, T 1 :

wall temperatures

λ1 :

ratio of relaxation to retardation time

u, v :

velocity along x and y directions

x :

coordinate along the channel

y :

coordinate normal to the channel

n :

Power law index

We :

Weissenberg number

P :

Pressure

:

dimensionless temperature

μ :

fluid viscosity

B r :

Brinkman number

ν :

kinematic viscosity of the fluid

ρ :

fluid density

c p :

effective heat capacity

a 1 and b 1 :

waves amplitudes

h 1, h 2 :

height of the channel

References

  1. T.W. Latham, Fluid motion in a peristaltic pump, MS Thesis, Massachusetts Institute of Technology, Cambridge (1966).

  2. Kh.S. Mekheimer, Y. Abd elmaboud, Phys. Lett. A. 372, 1657 (2008).

    Article  MATH  ADS  Google Scholar 

  3. Kh.S. Mekheimer, Phys. Lett. A. 372, 4271 (2008).

    Article  MATH  ADS  Google Scholar 

  4. S. Srinivas, R. Gayathri, Appl. Math. Comput. 215, 185 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Srinivas, M. Kothandapani, Appl. Math. Comput. 213, 197 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Nadeem, Noreen Sher Akbar, Z. Naturforsch. A 65a, 887 (2010).

    Google Scholar 

  7. S. Nadeem, Noreen Sher Akbar, J. Aerospace Eng. 24, 309 (2011).

    Article  Google Scholar 

  8. A. Ebaid, Phys. Lett. A 372, 4493 (2008).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. A. Ebaid, Phys. Lett. A 372, 5321 (2008).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Noreen Sher Akbar, Heat Transfer Res. 45, 293 (2014).

    Article  Google Scholar 

  11. Noreen Sher Akbar, M. Raza, R. Ellahi, Eur. Phys. J. Plus 129, 155 (2014).

    Article  Google Scholar 

  12. Noreen Sher Akbar, Z.H. Khan, S. Nadeem, Eur. Phys. J. Plus 129, 123 (2014).

    Article  Google Scholar 

  13. Noreen Sher Akbar, E.N. Maraj, S. Nadeem, Eur. Phys. J. Plus 129, 149 (2014).

    Article  Google Scholar 

  14. Noreen Sher Akbar, T. Hayat, S. Nadeem, Awatif A. Hendi, Int. J. Heat Mass Transfer 54, 4360 (2011).

    Article  MATH  Google Scholar 

  15. Noreen Sher Akbar, S. Nadeem, Mohammad Ali, Heat Transfer Res. 43, 69 (2012).

    Article  Google Scholar 

  16. Noreen Sher Akbar, T. Hayat, S. Nadeem, Awatif A. Hendi, Prog. Comput. Fluid Dyn. 12, 363 (2012).

    Article  Google Scholar 

  17. A. Ishak, Appl. Math. Comput. 217, 837 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  18. O.D. Makinde, T. Chinyoka, L. Rundora, Comput. Math. Appl. 62, 3343 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Aziz, Commun. Nonlinear Sci. Numer. Simulat. 14, 1064 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  20. Noreen Sher Akbar, Int. J. Bio Math. 6, 350034 (2013).

    Google Scholar 

  21. Noreen Sher Akbar, S. Nadeem, Heat Transfer Res. 45, 219 (2014).

    Google Scholar 

  22. Noreen Sher Akbar, J. Power Technol. 94, 34 (2014).

    Google Scholar 

  23. E.H. Aly, A. Ebaid, Abstract Appl. Anal. 2014, 191876 (2014).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noreen Sher Akbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, N.S. Peristaltic flow of a tangent hyperbolic fluid with convective boundary condition. Eur. Phys. J. Plus 129, 214 (2014). https://doi.org/10.1140/epjp/i2014-14214-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14214-0

Keywords

Navigation