Skip to main content
Log in

Models of universe with a polytropic equation of state: I. The early universe

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We construct models of universe with a generalized equation of state \(p=(\alpha \rho +k\rho^{1+1/n})c^{2}\) having a linear component and a polytropic component. Concerning the linear equation of state \( p=\alpha\rho c^{2}\), we assume \( -1\le\alpha\le 1\). This equation of state describes radiation ( \( \alpha=1/3\) or pressureless matter (\( \alpha = 0\). Concerning the polytropic equation of state \( p=k\rho^{1+1/n}c^{2}\), we remain very general allowing the polytropic constant k and the polytropic index n to have arbitrary values. In this paper, we consider positive indices n > 0 . In that case, the polytropic component dominates the linear component in the early universe where the density is high. For \( \alpha = 1/3\), n = 1 and \( k=-4/(3\rho_{P})\), where \( \rho_{P}=5.16 10^{99}\) g/m3 is the Planck density, we obtain a model of early universe describing the transition from the vacuum energy era to the radiation era. The universe exists at any time in the past and there is no primordial singularity. However, for t < 0 , its size is less than the Planck length \( l_{P}=1.62 10^{-35}\) m. In this model, the universe undergoes an inflationary expansion with the Planck density \( \rho_{P}=5.16 10^{99}\) g/m3 (vacuum energy) that brings it from the Planck size \( l_{P}=1.62 10^{-35}\) m at t = 0 to a size \( a_{1}=2.61 10^{-6}\) m at \( t_{1}=1.25 10^{-42}\) s (corresponding to about 23.3 Planck times \( t_{P}=5.39 10^{-44}\) s). For \( \alpha = 1/3\), n = 1 and \( k=4/(3\rho_{P})\), we obtain a model of early universe with a new form of primordial singularity: The universe starts at t = 0 with an infinite density and a finite radius a = a 1 . Actually, this universe becomes physical at a time \( t_{i}=8.32 10^{-45}\) s from which the velocity of sound is less than the speed of light. When \( a\gg a_{1}\), the universe enters in the radiation era and evolves like in the standard model. We describe the transition from the vacuum energy era to the radiation era by analogy with a second-order phase transition where the Planck constant ℏ plays the role of finite-size effects (the standard Big Bang theory is recovered for ℏ = 0 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Friedmann, G. Lema\^ıtre, Essais de Cosmologie. Précédé de L'Invention du Big Bang par J.P. Luminet (Source du savoir Seuil, 1997)

  2. H. Nussbaumer, L. Bieri, Discovering the Expanding Universe (Cambridge, 2009)

  3. A. Einstein, Sitz. König. Preu. Akad. Wiss., 142 (1917)

  4. G.E. Lema\^ıtre, in The Cosmological Constant, edited by P.A. Schlipp (Open Court, La Salle, Illinois, 1997)

  5. W. de Sitter, Proc. Akad. Wetensch. Amsterdam 19, 1217 (1917)

    ADS  Google Scholar 

  6. W. de Sitter, Mon. Not. R. Astron. Soc. 78, 3 (1917)

    ADS  Google Scholar 

  7. H.P. Robertson, Rev. Mod. Phys. 5, 62 (1933)

    Article  ADS  Google Scholar 

  8. A. Friedmann, Z. Phys. 10, 377 (1922)

    Article  ADS  Google Scholar 

  9. A. Friedmann, Z. Phys. 21, 326 (1924)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. A. Einstein, Z. Phys. 11, 326 (1922)

    Article  ADS  MATH  Google Scholar 

  11. A. Einstein, Z. Phys. 16, 228 (1923)

    Article  ADS  MATH  Google Scholar 

  12. K. Lanczos, Phys. Z. 23, 539 (1922)

    MATH  Google Scholar 

  13. H. Weyl, Phys. Z. 24, 230 (1923)

    MATH  Google Scholar 

  14. G. Lema\^itre, J. Math. Phys. (M.I.T.) 4, 188 (1925)

    MATH  Google Scholar 

  15. G. Lema\^itre, Ann. Soc. Sci. Bruxelles 47, 49 (1927)

    ADS  Google Scholar 

  16. G. Strömberg, Astrophys. J. 61, 353 (1925)

    Article  ADS  Google Scholar 

  17. E. Hubble, Proc. Natl. Acad. Sci. 15, 168 (1929)

    Article  ADS  MATH  Google Scholar 

  18. G. Lema\^itre, Mon. Not. R. Astron. Soc. 91, 483 (1931)

    ADS  MATH  Google Scholar 

  19. H.P. Robertson, Philos. Mag. 5, 835 (1928)

    MATH  Google Scholar 

  20. H.P. Robertson, Proc. Natl. Acad. Sci. 15, 822 (1929)

    Article  ADS  MATH  Google Scholar 

  21. W. de Sitter, The Observatory 53, 37 (1930)

    Google Scholar 

  22. A.S. Eddington, Mon. Not. R. Astron. Soc. 90, 668 (1930)

    ADS  MATH  Google Scholar 

  23. W. de Sitter, Bull. Astron. Inst. Neth. 185, 157 (1930)

    ADS  Google Scholar 

  24. W. de Sitter, Bull. Astron. Inst. Neth. 193, 211 (1930)

    ADS  Google Scholar 

  25. A. Einstein, Sitz. König. Preu. Akad. Wiss. 235, (1931)

  26. A. Einstein, W. de Sitter, Proc. Natl. Acad. Sci. 18, 213 (1932)

    Article  ADS  Google Scholar 

  27. G. Lema\^itre, Mon. Not. R. Astron. Soc. 91, 490 (1931)

    ADS  MATH  Google Scholar 

  28. A.S. Eddington, Nature 127, 447 (1931)

    Article  ADS  Google Scholar 

  29. G. Lema\^itre, Rev. Quest. Sci. 20, 391 (1931)

    Google Scholar 

  30. G. Lema\^itre, Ann. Soc. Sci. Bruxelles 53, 51 (1933)

    ADS  Google Scholar 

  31. F. Hoyle, Mon. Not. R. Astron. Soc. 108, 372 (1948)

    ADS  MATH  Google Scholar 

  32. A.A. Penzias, R.W. Wilson, Astrophys. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  33. G. Gamow, Phys. Rev. 74, 505 (1948)

    Article  ADS  Google Scholar 

  34. A.G. Doroshkevich, I.D. Novikov, Dokl. Akad. Nauk 154, 809 (1964)

    Google Scholar 

  35. R.H. Dicke, P.J.E. Peebles, P.G. Roll, D.T. Wilkinson, Astrophys. J. 142, 414 (1965)

    Article  ADS  Google Scholar 

  36. P.H. Chavanis, Phys. Rev. D 84, 043531 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  37. G. Lema\^itre, Nature 127, 706 (1931)

    Article  ADS  MATH  Google Scholar 

  38. A.H. Guth, Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  39. A.D. Linde, Phys. Lett. B 108, 389 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Albrecht, P.J. Steinhardt, M.S. Turner, F. Wilczek, Phys. Rev. Lett. 48, 1437 (1982)

    Article  ADS  Google Scholar 

  41. A. Linde, Particle Physics and Inflationary Cosmology (Harwood, Chur, Switzerland, 1990)

  42. J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, 2008)

  43. P.H. Chavanis, Astron. Astrophys. 537, A127 (2012)

    Article  ADS  Google Scholar 

  44. P.H. Chavanis, arXiv:1208.0801 (2012)

  45. P.H. Chavanis, arXiv:1208.1185 (2012)

  46. A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  47. N. Bilic, G.B. Tuper, R. Viollier, Phys. Lett. B 535, 17 (2002)

    Article  ADS  MATH  Google Scholar 

  48. J.S. Fabris, S.V. Goncalves, P.E. de Souza, Gen. Relativ. Gravit. 34, 53 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  49. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  50. V. Gorini, A. Kamenshchik, U. Moschella, Phys. Rev. D 67, 063509 (2003)

    Article  ADS  Google Scholar 

  51. M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 70, 083519 (2004)

    Article  ADS  Google Scholar 

  52. S. Weinberg, Gravitation and Cosmology (John Wiley & Sons, 1972)

  53. E.A. Milne, Q. J. Math. 5, 64 (1934)

    Article  ADS  Google Scholar 

  54. W.H. McCrea, E.A. Milne, Q. J. Math. 5, 73 (1934)

    Article  ADS  Google Scholar 

  55. W.H. McCrea, Proc. R. Soc. London. 206, 562 (1951)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. E.R. Harrison, Ann. Phys. (N.Y.) 35, 437 (1965)

    Article  ADS  Google Scholar 

  57. J.A.S. Lima, V. Zanchin, R. Brandenberger, Mon. Not. R. Astron. Soc. 291, L1 (1997)

    Article  ADS  Google Scholar 

  58. G. Lema\^itre, Proc. Natl. Acad. Sci. 20, 12 (1934)

    Article  ADS  Google Scholar 

  59. P.J.E. Peebles, The Large-Scale Structure of the Universe (Princeton University Press, 1980)

  60. A.D. Sakharov, Dokl. Akad. Nauk SSSR 177, 70 (1967)

    ADS  Google Scholar 

  61. Ya.B. Zeldovich, Sov. Phys. Uspek. 11, 381 (1968)

    Article  ADS  Google Scholar 

  62. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. T. Padmanabhan, Theoretical Astrophysics, Vol. III: Galaxies and Cosmology (Cambridge University Press, 2002)

  65. J.P. Luminet, Gen. Relativ. Gravit. 43, 2911 (2011)

    Article  ADS  MATH  Google Scholar 

  66. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Henri Chavanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavanis, PH. Models of universe with a polytropic equation of state: I. The early universe. Eur. Phys. J. Plus 129, 38 (2014). https://doi.org/10.1140/epjp/i2014-14038-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14038-x

Keywords

Navigation