Skip to main content
Log in

Unitary standard model from spontaneous dimensional reduction and weak boson scattering at the LHC

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Spontaneous dimensional reduction (SDR) is a striking phenomenon predicted by a number of quantum gravity approaches which all indicate that the spacetime dimensions get reduced at high energies. In this work, we formulate an effective theory of electroweak interactions based upon the standard model, incorporating the spontaneous reduction of space-dimensions at TeV scale. The electroweak gauge symmetry is nonlinearly realized with or without a Higgs boson. We demonstrate that the SDR ensures good high-energy behavior and predicts unitary weak boson scattering. For a light Higgs boson of mass 125GeV, the TeV scale SDR gives a natural solution to the hierarchy problem. Such a light Higgs boson can have induced anomalous gauge couplings from the TeV scale SDR. We find that the corresponding WW scattering cross sections become unitary at TeV scale, but exhibit different behaviors from that of the 4d standard model. These can be discriminated by the WW scattering experiments at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Glashow, Nucl. Phys. 22, 579 (1961).

    Google Scholar 

  2. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).

    ADS  Google Scholar 

  3. A. Salam, in Elementary Particle Theory, Nobel Symposium No. 8, edited by N. Svartholm (Almqvist & Wiksells, Stockholm, 1968) p. 367.

  4. P.W. Higgs, Phys. Lett. 12, 132 (1964).

    ADS  Google Scholar 

  5. P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964).

    MathSciNet  ADS  Google Scholar 

  6. P.W. Higgs, Phys. Rev. 145, 1156 (1966).

    MathSciNet  ADS  Google Scholar 

  7. F. Englert, R. Brout, Phys. Rev. Lett. 13, 321 (1964).

    MathSciNet  ADS  Google Scholar 

  8. G.S. Guralnik, C.R. Hagen, T.W. Kibble, Phys. Rev. Lett. 13, 585 (1964).

    ADS  Google Scholar 

  9. G. ’t Hooft, Nucl. Phys. B 35, 167 (1971).

    ADS  Google Scholar 

  10. G. ’t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972).

    MathSciNet  ADS  Google Scholar 

  11. G. ’t Hooft, M. Veltman, Nucl. Phys. B 50, 318 (1972).

    MathSciNet  ADS  Google Scholar 

  12. J.M. Cornwall, D.N. Levin, G. Tiktopoulos, Phys. Rev. Lett. 30, 1268 (1973).

    ADS  Google Scholar 

  13. J.M. Cornwall, D.N. Levin, G. Tiktopoulos, Phys. Rev. D 10, 1145 (1974).

    ADS  Google Scholar 

  14. C.H. Llewellyn Smith, Phys. Lett. B 46, 233 (1973).

    ADS  Google Scholar 

  15. D.A. Dicus, V.S. Mathur, Phys. Rev. D 7, 3111 (1973).

    ADS  Google Scholar 

  16. B.W. Lee, C. Quigg, H.B. Thacker, Phys. Rev. Lett. 38, 883 (1977).

    ADS  Google Scholar 

  17. B.W. Lee, C. Quigg, H.B. Thacker, Phys. Rev. D 16, 1519 (1977).

    ADS  Google Scholar 

  18. ATLAS Collaboration (G. Aad et al.), Phys. Lett. B 716, 1 (2012) arXiv:1207.7214 [hep-ex].

    ADS  Google Scholar 

  19. CMS Collaboration (S. Chatrchyan et al.), Phys. Lett. B 716, 30 (2012) arXiv:1207.7235 [hep-ex].

    ADS  Google Scholar 

  20. See: Rencontres de Moriond 2013, http://moriond.in2p3.fr, EW Interactions and Unified Theories, March 2–9, 2013, and QCD and High Energy Interactions, March 9–16, 2013, La Thuile, Aosta valley, Italy.

  21. M.S. Chanowitz, M.K. Gaillard, Nucl. Phys. B 261, 379 (1985).

    ADS  Google Scholar 

  22. M.S. Chanowitz, arXiv:hep-ph/9812215.

  23. M.S. Chanowitz, Czech. J. Phys. B 55, 45 (2005) arXiv:hep-ph/0412203 and references therein.

    Google Scholar 

  24. M.S. Chanowitz, M.A. Furman, I. Hinchliffe, Nucl. Phys. B 153, 402 (1979).

    ADS  Google Scholar 

  25. T. Appelquist, M.S. Chanowitz, Phys. Rev. Lett. 59, 2405 (1987).

    ADS  Google Scholar 

  26. D.A. Dicus, H.J. He, Phys. Rev. D 71, 093009 (2005) hep-ph/0409131.

    ADS  Google Scholar 

  27. D.A. Dicus, H.J. He, Phys. Rev. Lett. 94, 221802 (2005) hep-ph/0502178.

    ADS  Google Scholar 

  28. L. Susskind, Phys. Rev. D 20, 2619 (1979).

    ADS  Google Scholar 

  29. R. Dashen, H. Neuberger, Phys. Rev. Lett. 50, 1897 (1983).

    ADS  Google Scholar 

  30. C.T. Hill, E.H. Simmons, Phys. Rep. 381, 235 (2003) arXiv:hep-ph/0203079 and references therein.

    ADS  Google Scholar 

  31. M.E. Peskin, arXiv:0801.1928 and references therein.

  32. N. Arkani-Hamed, S. Dimopolous, G.R. Dvali, Phys. Lett. B 429, 263 (1998).

    ADS  Google Scholar 

  33. I. Antoniadis, N. Arkani-Hamed, S. Dimopolous, G.R. Dvali, Phys. Lett. B 436, 257 (1998).

    ADS  Google Scholar 

  34. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

    MathSciNet  ADS  MATH  Google Scholar 

  35. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).

    MathSciNet  ADS  MATH  Google Scholar 

  36. N. Arkani-Hamed, A.G. Cohen, H. Georgi, Phys. Rev. Lett. 86, 4757 (2001).

    MathSciNet  ADS  Google Scholar 

  37. C.T. Hill, S. Pokorski, J. Wang, Phys. Rev. D 64, 105005 (2001).

    ADS  Google Scholar 

  38. G. ’t Hooft, Salam-festschrift 4(A), 1 (1993) arXiv:gr-qc/9310026.

    Google Scholar 

  39. S. Carlip, arXiv:1009.1136 [gr-qc] and references therein.

  40. S. Carlip, arXiv:0909.3329 [gr-qc].

  41. O. Lauscher, M. Reuter, Phys. Rev. D 65, 025013 (2002) arXiv:hep-th/0108040.

    MathSciNet  ADS  Google Scholar 

  42. O. Lauscher, M. Reuter, Phys. Rev. D 66, 025026 (2002) arXiv:hep-th/0205062.

    MathSciNet  ADS  Google Scholar 

  43. J. Ambjørn, J. Jurkiewicz, R. Loll, Phys. Rev. Lett. 95, 171301 (2005) arXiv:hep-th/0505113.

    ADS  Google Scholar 

  44. J. Ambjørn, J. Jurkiewicz, R. Loll, Phys. Rev. D 72, 064014 (2005) arXiv:hep-th/0505154.

    ADS  Google Scholar 

  45. L. Modesto, Class. Quantum Grav. 26, 242002 (2009) arXiv:0812.2214 [gr-qc].

    MathSciNet  ADS  Google Scholar 

  46. J.J. Atick, E. Witten, Nucl. Phys. B 310, 291 (1988).

    MathSciNet  ADS  Google Scholar 

  47. P. Hořava, Phys. Rev. Lett. 102, 161301 (2009).

    MathSciNet  ADS  Google Scholar 

  48. P. Hořava, Phys. Rev. D 79, 084008 (2009).

    MathSciNet  ADS  Google Scholar 

  49. J. Mureika, D. Stojkovic, Phys. Rev. Lett. 106, 101101 (2011) arXiv:1102.3434 [gr-qc].

    ADS  Google Scholar 

  50. L. Anchordoqui, D.C. Dai, M. Fairbairn, G. Landsberg, D. Stojkovic, Mod. Phys. Lett. A 27, 1250021 (2012) arXiv:1003.5914 [hep-ph].

    ADS  Google Scholar 

  51. L.A. Anchordoqui, D.C. Dai, H. Goldberg, G. Landsberg, G. Shaughnessy, D. Stojkovic, T.J. Weiler, Phys. Rev. D 83, 114046 (2011) arXiv:1012.1870 [hep-ph].

    ADS  Google Scholar 

  52. Steven Weinberg, PoS CD 09, 001 (2009) arXiv:0908.1964 [hep-th].

    Google Scholar 

  53. G. Calcagni, Phys. Rev. Lett. 104, 251301 (2010) arXiv:0912.3142 [hep-th].

    ADS  Google Scholar 

  54. G. Calcagni, JHEP 01, 065 (2012) arXiv:1107.5041 [hep-th] and references therein.

    MathSciNet  ADS  Google Scholar 

  55. G. Calcagni, Adv. Theor. Math. Phys. 16, 549 (2012) arXiv:1106.5787 [hep-th].

    MathSciNet  MATH  Google Scholar 

  56. G. Calcagni, Phys. Lett. B 697, 251 (2011) arXiv:1012.1244 [hep-th].

    ADS  Google Scholar 

  57. G. Calcagni, Phys. Rev. D 84, 061501 (2011) arXiv:1106.0295 [hep-th].

    ADS  Google Scholar 

  58. M. Arzano, G. Calcagni, D. Oriti, M. Scalisi, Phys. Rev. D 84, 125002 (2011) arXiv:1107.5308 [hep-th].

    ADS  Google Scholar 

  59. S. Matsuzaki, K. Yamawaki, Phys. Rev. D 86, 035025 (2012) arXiv:1206.6703.

    ADS  Google Scholar 

  60. S. Matsuzaki, K. Yamawaki, Phys. Rev. D 86, 115004 (2012) arXiv:1209.2017.

    ADS  Google Scholar 

  61. S. Matsuzaki, K. Yamawaki, Phys. Lett. B 719, 378 (2013) arXiv:1207.5911.

    ADS  Google Scholar 

  62. B. Bellazzini, C. Csaki, J. Hubisz, J. Serra, J. Terning, Eur. Phys. J. C 73, 2333 (2013) arXiv:1209.3299.

    ADS  Google Scholar 

  63. O. Antipin, J. Krog, E. Molgaard, F. Sannino, arXiv:1303.7213 [hep-ph].

  64. R.S. Chivukula, V. Koulovassilopoulos, Phys. Lett. B 309, 371 (1993) arXiv:hep-ph/9304293.

    ADS  Google Scholar 

  65. V. Koulovassilopoulos, R.S. Chivukula, Phys. Rev. D 50, 3218 (1994) arXiv:hep-ph/9312317.

    ADS  Google Scholar 

  66. H.J. He, Y.P. Kuang, C.P. Yuan, B. Zhang, Phys. Lett. B 554, 64 (2003) arXiv:hep-ph/0211229.

    ADS  Google Scholar 

  67. H.J. He, Y.P. Kuang, C.P. Yuan, B. Zhang, in Proceedings of the ``Workshop on Physics at TeV Colliders’’, Les Houches, France, May 26--June 6, 2003, arXiv:hep-ph/0401209 and references therein.

  68. B. Zhang, Y.P. Kuang, H.J. He, C.P. Yuan, Phys. Rev. D 67, 114024 (2003) arXiv:hep-ph/0303048.

    ADS  Google Scholar 

  69. T. Han, D. Krohn, L.T. Wang, W. Zhu, JHEP 03, 082 (2010) arXiv:0911.3656.

    ADS  Google Scholar 

  70. W. Siegel, Phys. Lett. B 84, 193 (1979).

    MathSciNet  ADS  Google Scholar 

  71. G. ’t Hooft, M. Veltman, Nucl. Phys. B 44, 189 (1972).

    MathSciNet  ADS  Google Scholar 

  72. H.J. He, Y.P. Kuang, C.P. Yuan, DESY-97-056, arXiv:hep-ph/9704276.

  73. T. Appelquist, C. Bernard, Phys. Rev. D 22, 200 (1980).

    ADS  Google Scholar 

  74. A.C. Langhitano, Phys. Rev. D 22, 1166 (1980).

    ADS  Google Scholar 

  75. A.C. Langhitano, Nucl. Phys. B 188, 118 (1981).

    ADS  Google Scholar 

  76. S. Weinberg, Physica A 96, 327 (1979).

    ADS  Google Scholar 

  77. R.S. Chivukula, D.A. Dicus, H.J. He, Phys. Lett. B 525, 175 (2002) hep-ph/0111016.

    MathSciNet  ADS  MATH  Google Scholar 

  78. J. Schwinger, Phys. Rev. 128, 2425 (1962).

    MathSciNet  ADS  MATH  Google Scholar 

  79. S. Deser, R. Jackiw, S. Templeton, Ann. Phys. 140, 372 (1982).

    MathSciNet  ADS  Google Scholar 

  80. S. Weinberg, Ultraviolet Divergences in Quantum Theories of Gravitation, in General Relativity: An Einstein Centenary Survey, edited by S.W. Hawking, W. Israel (Cambridge University Press, 1979) p. 790.

  81. D.F. Litim, Philos. Trans. R. Soc. London Ser. A 369, 2759 (2011) arXiv:1102.4624 [hep-th].

    MathSciNet  ADS  MATH  Google Scholar 

  82. M. Niedermaier, M. Reuter, Living Rev. Relativ. 9, 5 (2006).

    ADS  Google Scholar 

  83. M. Soldate, Phys. Lett. B 186, 321 (1987).

    ADS  Google Scholar 

  84. J.L. Basdevant, Fortschr. Phys. 20, 283 (1972).

    Google Scholar 

  85. S.N. Gupta, Quantum Electrodynamics (Gordon and Breach, New York, 1981) pp. 191-198.

  86. O. Cheyette, M.K. Gaillard, Phys. Lett. B 197, 205 (1987).

    ADS  Google Scholar 

  87. N. Truong, Phys. Rev. Lett. 61, 2526 (1988).

    ADS  Google Scholar 

  88. D. Dicus, W. Repko, Phys. Rev. D 42, 3660 (1990) and references therein.

    ADS  Google Scholar 

  89. T. Abe, N. Chen, H.J. He, JHEP 01, 082 (2013) arXiv:1207.4103 and references therein.

    ADS  Google Scholar 

  90. X.-F. Wang, arXiv:1304.2257 [hep-ph].

  91. C. Du, H.J. He, Y.P. Kuang, B. Zhang, N.D. Christensen, R.S. Chivukula, E.H. Simmons, Phys. Rev. D 86, 095011 (2012) arXiv:1206.6022 and references therein.

    ADS  Google Scholar 

  92. H.J. He et al., Phys. Rev. D 78, 031701 (2008) arXiv:0708.2588.

    ADS  Google Scholar 

  93. A.S. Belyaev et al., Phys. Rev. D 80, 055022 (2009) arXiv:0907.2662.

    MathSciNet  ADS  Google Scholar 

  94. R.N. Mohapatra, G. Senjanovic, Phys. Rev. D 23, 165 (1981).

    ADS  Google Scholar 

  95. R.N. Mohapatra, G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).

    ADS  Google Scholar 

  96. M.S. Chanowitz, M.K. Gaillard, Nucl. Phys. B 261, 379 (1985).

    ADS  Google Scholar 

  97. V.D. Barger, K. Cheung, T. Han, R.J.N. Phillips, Phys. Rev. D 42, 3052 (1990).

    ADS  Google Scholar 

  98. J. Bagger et al., Phys. Rev. D 49, 1246 (1994) arXiv:hep-ph/9306256.

    ADS  Google Scholar 

  99. J. Bagger et al., Phys. Rev. D 52, 3878 (1995) arXiv:hep-ph/9504426.

    ADS  Google Scholar 

  100. M.S. Chanowitz, W. Kilgore, Phys. Lett. B 322, 147 (1994) arXiv:hep-ph/9311336.

    ADS  Google Scholar 

  101. M.S. Chanowitz, W. Kilgore, Phys. Lett. B 347, 387 (1995) arXiv:hep-ph/9412275.

    ADS  Google Scholar 

  102. H.J. He, Y.P. Kuang, C.P. Yuan, Phys. Rev. D 55, 3038 (1997) arXiv:hep-ph/9611316.

    ADS  Google Scholar 

  103. H.J. He, Y.P. Kuang, C.P. Yuan, DESY-97-056, arXiv:hep-ph/9704276.

  104. M.S. Chanowitz, Czech. J. Phys. B 55, 45 (2005) arXiv:hep-ph/0412203 and references therein.

    Google Scholar 

  105. Roshan Foadi, Francesco Sannino, Phys. Rev. D 78, 037701 (2008) arXiv:0801.0663 [hep-ph].

    ADS  Google Scholar 

  106. Roshan Foadi, Matti Jarvinen, Francesco Sannino, Phys. Rev. D 79, 035010 (2009) arXiv:0811.3719 [hep-ph].

    ADS  Google Scholar 

  107. P. Fischer, D.F. Litim, Phys. Lett. B 638, 497 (2006) arXiv:hep-th/0602203.

    MathSciNet  ADS  MATH  Google Scholar 

  108. D.F. Litim, T. Plehn, Phys. Rev. Lett. 100, 131301 (2008) arXiv:0707.3983.

    ADS  Google Scholar 

  109. J. Hewett, T. Rizzo, JHEP 12, 009 (2007) arXiv:0707.3182.

    ADS  Google Scholar 

  110. E. Gerwick, Eur. Phys. J. C 71, 1676 (2011) arXiv:1012.1118.

    ADS  Google Scholar 

  111. E. Gerwick, D. Litim, T. Plehn, Phys. Rev. D 83, 084048 (2011) arXiv:1101.5548.

    ADS  Google Scholar 

  112. X. Calmet, Mod. Phys. Lett. A 26, 1571 (2011) arXiv:1012.5529.

    MathSciNet  ADS  MATH  Google Scholar 

  113. J.A. Casas, J.R. Espinosa, M. Quiros, Phys. Lett. B 382, 374 (1996) arXiv:hep-ph/9603227 and references therein.

    ADS  Google Scholar 

  114. T. Hambye, K. Riesselmann, Phys. Rev. D 55, 7255 (1997) arXiv:hep-ph/9610272 and references therein.

    ADS  Google Scholar 

  115. C. Quigg, Annu. Rev. Nucl. Part. Sci. 59, 505 (2009) arXiv:0905.3187 and references therein, for a recent review.

    ADS  Google Scholar 

  116. For example, P.P. Giardino, K. Kannike, I. Masina, M. Raidal, A. Strumia, arXiv:1303.3570 [hep-ph].

  117. R.S. Chivukula, D.A. Dicus, H.J. He, Phys. Lett. B 525, 175 (2002) hep-ph/0111016.

    MathSciNet  ADS  MATH  Google Scholar 

  118. R.S. Chivukula, H.J. He, Phys. Lett. B 532, 121 (2002) hep-ph/0201164.

    MathSciNet  ADS  MATH  Google Scholar 

  119. R.S. Chivukula, D.A. Dicus, H.J. He, S. Nandi, Phys. Lett. B 562, 109 (2003) hep-ph/0302263.

    ADS  Google Scholar 

  120. H.J. He, Int. J. Mod. Phys. A 20, 3362 (2005) hep-ph/0412113.

    ADS  MATH  Google Scholar 

  121. R.S. Chivukula, H.J. He, M. Kurachi, E.H. Simmons, M. Tanabashi, Phys. Rev. D 78, 095003 (2008) arXiv:0808.1682 and references therein.

    ADS  Google Scholar 

  122. G. Calcagni, private communications.

  123. H.-J. He, Z.-Z. Xianyu, Phys. Lett. B 720, 142 (2013) arXiv:1301.4570 [hep-ph].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Jian He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, HJ., Xianyu, ZZ. Unitary standard model from spontaneous dimensional reduction and weak boson scattering at the LHC. Eur. Phys. J. Plus 128, 40 (2013). https://doi.org/10.1140/epjp/i2013-13040-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13040-2

Keywords

Navigation