Skip to main content
Log in

On the inertia of heat

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Does heat have inertia? This question is at the core of a long-standing controversy on Eckart's dissipative relativistic hydrodynamics. Here I show that the troublesome inertial term in Eckart’s heat flux arises only if one insists on defining thermal diffusivity as a spacetime constant. I argue that this is not the most natural definition, and that all confusion disappears if one considers, instead, the space-dependent comoving diffusivity, in line with the fact that, in the presence of gravity, space is an inhomogeneous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Eckart, Phys. Rev. 58, 919 (1940).

    Article  ADS  Google Scholar 

  2. Pham Mau Quan, Ann. Mat. Pura Appl. 38, 121 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  3. J.-F. Bennoun, Ann. Inst. H. Poincaré 3, 41 (1965).

    MathSciNet  Google Scholar 

  4. L.D. Landau, E. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, 1987).

  5. J. Ehlers, Kinetic theory of gases in general relativity theory, in Lectures in Statistical Physics (Springer Berlin/Heidelberg, 1974) pp. 78--105.

  6. W. Israel, Ann. Phys. 100, 310 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  7. W. Israel, J.M. Stewart, Ann. Phys. 118, 341 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  8. W.A. Hiscock, L. Lindblom, Phys. Rev. D 31, 725 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  9. N.G. Van Kampen, J. Stat. Phys. 46, 709 (1987).

    Article  ADS  MATH  Google Scholar 

  10. A. Sandoval-Villalbazo, A. Garcia-Perciante, L. Garcia-Colin, Physica A 388, 3765 (2009).

    Article  ADS  Google Scholar 

  11. L. García-Colín, A. Sandoval-Villalbazo, J. Non - Equilib. Thermodyn. 31, 11 (2006).

    Article  ADS  MATH  Google Scholar 

  12. L. García-Colín, A. Sandoval-Villalbazo, J. Non - Equilib. Thermodyn. 32, 187 (2007).

    Article  ADS  MATH  Google Scholar 

  13. W. Muschik, H.-H. von Borzeszkowski, J. Non - Equilib. Thermodyn. 32, 181 (2007).

    Article  ADS  MATH  Google Scholar 

  14. A.L. Garcia-Perciante, L. Garcia-Colin, A. Sandoval-Villalbaz, Gen. Relativ. Gravit. 41, 1645 (2009).

    Article  ADS  MATH  Google Scholar 

  15. N. Andersson, G. Comer, Proc. R. Soc. London A 466, 1373 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Smerlak, A. Youssef, The overdamped limit of the relativistic Kramers equation, in preparation.

  17. H.D. Weymann, Am. J. Phys. 35, 488 (1967).

    Article  ADS  Google Scholar 

  18. R. Geroch, J. Math. Phys. 36, 4226 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. R. Tolman, P. Ehrenfest, Phys. Rev. 36, 1791 (1930).

    Article  ADS  Google Scholar 

  20. N. Van Kampen, J. Phys. Chem. Solids 49, 673 (1988).

    Article  ADS  Google Scholar 

  21. E. Bringuier, Eur. J. Phys. 32, 975 (2011).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Smerlak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smerlak, M. On the inertia of heat. Eur. Phys. J. Plus 127, 72 (2012). https://doi.org/10.1140/epjp/i2012-12072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12072-4

Keywords

Navigation