Skip to main content
Log in

The concept of velocity in the history of Brownian motion

From physics to mathematics and back

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

Interest in Brownian motion was shared by different communities: this phenomenon was first observed by the botanist Robert Brown in 1827, then theorised by physicists in the 1900s, and eventually modelled by mathematicians from the 1920s, while still evolving as a physical theory. Consequently, Brownian motion now refers to the natural phenomenon but also to the theories accounting for it. There is no published work telling its entire history from its discovery until today, but rather partial histories either from 1827 to Perrin’s experiments in the late 1900s, from a physicist’s point of view; or from the 1920s from a mathematician’s point of view. In this article, we tackle the period straddling the two ‘half-histories’ just mentioned, in order to highlight continuity, to investigate the domain-shift from physics to mathematics, and to survey the enhancements of later physical theories. We study the works of Einstein, Smoluchowski, Langevin, Wiener, Ornstein and Uhlenbeck from 1905 to 1934 as well as experimental results, using the concept of Brownian velocity as a leading thread. We show how Brownian motion became a research topic for the mathematician Wiener in the 1920s, why his model was an idealization of physical experiments, what Ornstein and Uhlenbeck added to Einstein’s results, and how Wiener, Ornstein and Uhlenbeck developed in parallel contradictory theories concerning Brownian velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachelier, L. (1900). Théorie de la spéculation.Annales scientifiques de l’École normale supérieure17, 21–86.

    Article  MathSciNet  Google Scholar 

  2. Brush, S. (1976).The kind of motion we call heat. North Holland publishing Company, Amsterdam.

  3. Chaudesaigues, J.U. (1908). Le mouvement Brownien et la formule d’Einstein.Comptes rendus de l’académie des sciences de Paris147, 1044–1046.

    Google Scholar 

  4. Cohen, E.G.D. (1990). George E. Uhlenbeck and statistical mechanics.American Journal of Physics58, 619–625.

    Article  ADS  MathSciNet  Google Scholar 

  5. Darrigol, O. (2018).Atoms, Mechanics, and Probability: Ludwig Boltzmann’s Statistico-Mechanical Writings - An Exegesis. Oxford University Press, Oxford.

  6. Dimand, R.W. (1993). The case of Brownian motion: a note on Bachelier’s contribution.The British Journal for the History of Science26, 233–234.

    Article  Google Scholar 

  7. Doob, J.L. (1942). The Brownian Movement and Stochastic Equations.The Annals of Mathematics43, 351–369.

    Article  ADS  MathSciNet  Google Scholar 

  8. Doob, J.L. (1966). Wiener’s work in probability theory.Bulletin of the American Mathematical Society72, 69–73.

    Article  MathSciNet  Google Scholar 

  9. Dresden, M. (1989). George E. Uhlenbeck.Physics Today42, 91–94.

    Article  ADS  Google Scholar 

  10. Duclaux, J. (1908). Pressions osmotiques et mouvement brownien.Comptes rendus de l’académie des sciences de Paris147, 131–134.

    Google Scholar 

  11. Duplantier, B. (2006).Einstein, 1905–2005: Poincaré Seminar 2005. Damour, Thibault, Darrigol, Olivier, Duplantier, Bertrand, Rivasseau, Vincent (Eds.). Birkhäuser, Basel, pp. 201–293.

  12. Duplantier, B. (2007). Brownian Motion, “Diverse and Undulating”, https://arXiv:0705.1951.

  13. Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen.Annalen der Physik17, 549–560 [Translated in english in Investigations, pp. 1–18].

    Article  ADS  Google Scholar 

  14. Einstein, A. (1906). Zur Theorie der Brownschen Bewegung.Annalen der Physik19, 371–381 [Translated in english in Investigations, pp. 19–35].

    Article  ADS  Google Scholar 

  15. Einstein, A. (1907). Theoretische Bemerkungen über die Brownsche Bewegung.Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie13, 41–42 [Translated in english in Investigations, pp. 63–67].

    Article  ADS  Google Scholar 

  16. Einstein, A. (1926).Investigations on the Theory of the Brownian Movement [ English translation: Dover Publications, Inc., New-York (1956)].

  17. Einstein, A. (2006). On Boltzmann’s Principle and Some Immediate Consequences Thereof.Einstein, 1905–2005: Poincaré Seminar 2005. Damour, Thibault, Darrigol, Olivier, Duplantier, Bertrand, Rivasseau, Vincent (Eds.). Birkhäuser, Basel, pp. 183–199.

  18. Getoor, R. (2009). J.L. Doob: Foundations of stochastic processes and probabilistic potential theory.The Annals of Probability37, 1647–1663.

    Article  MathSciNet  Google Scholar 

  19. Gouy, L.G. (1915). Le mouvement brownien d’après Lucrèce.Comptes Rendus de l’académie des Sciences de Paris160, 167–168.

    Google Scholar 

  20. Henri, V. (1908a). Etude cinématographique des mouvements browniens.Comptes rendus del’académie des sciences de Paris146, 1024–1026.

    MATH  Google Scholar 

  21. Henri, V. (1908b). Influences des milieux sur les mouvements browniens.Comptes rendus del’académie des sciences de Paris147, 62–65.

    Google Scholar 

  22. Home, R. (2005). Speculating about Atoms in Early 20th-century Melbourne: William Sutherland and the Sutherland-Einstein Diffusion Relation, Sutherland Lecture. 16th National Congress. Australian Institute of Physics, Canberra.

  23. Kahane, J.-P. (1998). Un essai sur les origines de la théorie mathématique.Société Mathématique de France1998, 123–155.

    MATH  Google Scholar 

  24. Kahane, J.-P. (2014). Paul Langevin, le mouvement brownien et l’apparition du bruit blanc. Untexte, un mathématicien. Bibliothèque Nationale de France.

  25. Kerker, M. (1976). The Svedberg and Molecular Reality.Isis67, 190–216.

    Article  Google Scholar 

  26. Langevin, P. (1908). Sur la théorie du mouvement Brownien.Comptes rendus de l’académie des sciences de Paris146, 530–533.

    MATH  Google Scholar 

  27. Lévy, P. (1922). Leçons d’analyse fonctionnelle. Gauthier-Villars et Cie, Paris.

  28. Maiocchi, R. (1990). The case of Brownian motion.The British Journal for the History of Science23, 257–283.

    Article  MathSciNet  Google Scholar 

  29. Masani, P.R. (1990).Norbert Wiener 1894-1964. Birkhäuser Basel, Basel.

  30. Mason, R.C. (1945). Leonard Salomon Ornstein.Science102, 638–639.

    Article  ADS  Google Scholar 

  31. Maxwell, J.C. (1867). Letter to Peter G. Tait. Letter.

  32. Naqvi, K.R. (2005). The origin of the Langevin equation and the calculation of the mean squared displacement: Let’s set the record straight. https://arXiv:physics/0502141.

  33. Nelson, E. (1967).Dynamical Theories of Brownian Motion. Princeton University Press, Princeton. url: https://web.math.princeton.edu/~nelson/books/bmotion.pdf

  34. Nye, M.J. (1972).Molecular Reality. A Perspective on the Scientific Work of Jean Perrin. Elsevier, New York.

  35. Ornstein, L. (1919). On the Brownian Motion. KNAW, Proceedings 21, pp. 96–108.

  36. Ornstein, L. and Wijk, W.R.V. (1934). On the derivation of distribution functions in problems of Brownian motion.Physica1, 235–254.

    Article  ADS  Google Scholar 

  37. Ornstein, L. and Zernike, F. (1919). The Theory of the Brownian Motion and Statistical Mechanics. KNAW, Proceedings 21, pp. 109–114.

  38. Paley, R.E.A.C., Wiener, N. and Zygmund, A. (1933). Notes on random functions.Mathematische Zeitschrift37, 647–668.

    Article  MathSciNet  Google Scholar 

  39. Perrin, J. (1908a). L’agitation moléculaire et le mouvement Brownien.Comptes rendus del’académie des sciences de Paris146, 967–970.

    Google Scholar 

  40. Perrin, J. (1908b). La loi de Stokes et le mouvement Brownien.Comptes rendus de l’académie des sciences de Paris147, 475–476.

    Google Scholar 

  41. Perrin, J. (1909). Mouvement brownien et réalité moléculaire. Masson et Cie, Paris.

  42. Perrin, J. (1913).Les Atomes [ Re-edition: Flammarion, Paris (2014)].

  43. Piasecki, J. (2007). Centenary of Marian Smoluchowski’s theory of Brownian Motion.Acta Phisica Polonica B38, 1623–1629.

    ADS  Google Scholar 

  44. Pohl, G. (2006). The theory of Brownian motion – one hundred years old. The Global and the Local: The History of Science and the Cultural Integration of Europe. Proceedings of the 2nd ICESHS. Cracow, pp. 419–424.

  45. Renn, J. (2005). Einstein’s invention of Brownian motion.Annalen der Physik14, 23–37.

    Article  ADS  MathSciNet  Google Scholar 

  46. Ryskin, G. (1997). Simple procedure for correcting equations of evolution: Application to Markov processes.Physical Review E56, 5123–5127.

    Article  ADS  Google Scholar 

  47. Smoluchowski, M. (1906). Essai d’une théorie cinétique du mouvement Brownien et des milieux troubles.Bulletin International de l’académie des sciences de Cracovie, pp. 577–602.

  48. Smoluchowski, M. (1912). Experimentell nachweisbare, der üblichen Thermodynamik widersprechende Molekularphänomene.Physikalische Zeitschrift13, 1069–1080.

    MATH  Google Scholar 

  49. Średniawa, B. (1992). The Collaboration of Marian Smoluchowski and Theodor Svedberg on Brownian Motion and Density Fluctuations.Centaurus35, 325–355.

    Article  ADS  Google Scholar 

  50. Svedberg, T. (1906a). Über die Eigenbewegung der Teilchen in Kolloidalen Lösungen.Zeitschrift für Elektrotechnik und Elektrochemie12, 853–860.

    Article  Google Scholar 

  51. Svedberg, T. (1906b). Über die Eigenbewegung der Teilchen in Kolloidalen Lösungen II.Zeitschrift für Elektrotechnik und Elektrochemie12, 909–910.

    Article  Google Scholar 

  52. Uhlenbeck, G. and Ornstein, L. (1930). On the Theory of the Brownian Motion.Physical Review36, 823–841.

    Article  ADS  Google Scholar 

  53. Uhlenbeck, G. and Wang, M.C. (1945). On the Theory of the Brownian Motion II.Reviews of Modern Physics17, 323–342.

    Article  ADS  MathSciNet  Google Scholar 

  54. Wiener, N. (1920). The Mean of a Functional of Arbitrary Elements.The Annals of Mathematics22, 66–72.

    Article  MathSciNet  Google Scholar 

  55. Wiener, N. (1921a). The average of an analytical functional.Proceedings of the National Academy of Sciences7, 253–260.

    Article  ADS  Google Scholar 

  56. Wiener, N. (1921b). The Average of an Analytic Functional and the Brownian Movement.Proceedings of the National Academy of Sciences7, 294–298.

    Article  ADS  Google Scholar 

  57. Wiener, N. (1922). The Average value of a functional.Proceedings of the London Mathematical Society22, 454–467.

    MathSciNet  MATH  Google Scholar 

  58. Wiener, N. (1923). Differential Space.Journal of Mathematics and Physics2, 131–174.

    Article  Google Scholar 

  59. Wiener, N. (1930). Generalized harmonic analysis.Acta Mathematica55, 117–258.

    Article  MathSciNet  Google Scholar 

  60. Wiener, N. (1956).I Am A Mathematician The Later Life of a Prodigy. The M.I.T Press, Cambridge, Massachussetts.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Genthon.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genthon, A. The concept of velocity in the history of Brownian motion. EPJ H 45, 49–105 (2020). https://doi.org/10.1140/epjh/e2020-10009-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2020-10009-8

Navigation