Skip to main content
Log in

Impacts of external electric fields on the permeation of glycerol and water molecules through aquaglyceroporin-7: molecular dynamics simulation approach

  • Regular Article - Living Systems
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The aquaglyceroporin-7 (AQP7) protein channels facilitate the permeation of glycerol and water molecules through cell membranes by passive diffusion and play a crucial role in cell physiology. Considering the wide-spirit usage of radiofrequency electromagnetic fields in our daily life, in this study, the effects of constant and GHz electric fields were investigated on the dynamics of glycerol and water molecules inside the AQP7. To this end, four different molecular simulation groups were carried out in the absence and presence of electric fields. The results reveal that the free energy profile of the glycerol permeation inside the channel is reduced in the presence of the field of 0.2 mV/nm and the oscillating field of 10 GHz. In addition, exposing the channel to the electric field of 0.2 mV/nm assisted the water transport through the channel with no considerable effect on channel stability. These observations provide a framework for understanding how such fields could alter normal operation of protein channels, which may lead to disease beginning or being used in disease treatment.

Graphical abstract

Glycerol and water molecules permeation through the aquaglyceroporin-7 channel can be influenced by application of external electric fields

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. X. Cheng, P.M. Pinsky, PLoS ONE 10, e0145422 (2015)

    Article  Google Scholar 

  2. I. Lorenzo, M. Serra-Prat, J.C. Yébenes, Nutrients 11, 1857 (2019)

    Article  Google Scholar 

  3. W. Song, H. Joshi, R. Chowdhury, J.S. Najem, Y. Shen, C. Lang, C.B. Henderson, Y. Tu, M. Farell, M.E. Pitz, C.D. Maranas, P.S. Cremer, R.J. Hickey, S.A. Sarles, J. Hou, A. Aksimentiev, M. Kumar, Nat. Nanotechnol. 15, 73 (2020)

    Article  ADS  Google Scholar 

  4. S. Törnroth-Horsefield, Y. Wang, K. Hedfalk, U. Johanson, M. Karlsson, E. Tajkhorshid, R. Neutze, P. Kjellbom, Structural mechanism of plant aquaporin gating. Nature 439, 688 (2006)

    Article  ADS  Google Scholar 

  5. B.L. De Groot, H. Grubmüller, Science 294, 2353 (2001)

    Article  ADS  Google Scholar 

  6. M. Alishahi, R. Kamali, Eur. Phys. J. E 42, 151 (2019)

    Article  Google Scholar 

  7. D. Wang, J. Weng, W. Wang, Chem. Sci. 10, 6957 (2019)

    Article  Google Scholar 

  8. J. Hénin, E. Tajkhorshid, K. Schulten, C. Chipot, Biophys. J . 94, 832 (2008)

    Article  Google Scholar 

  9. C. Aponte-Santamaría, J.S. Hubb, B.L. de Groot, Phys. Chem. Chem. Phys. 12, 10246 (2010)

    Article  Google Scholar 

  10. J.S. Hub, B.L. De Groot, Proc. Natl. Acad. Sci. U.S.A. 105, 1198 (2008)

    Article  ADS  Google Scholar 

  11. P. Agre, L.S. King, M. Yasui, W.B. Guggino, O.P. Ottersen, Y. Fujiyoshi, A. Engel, S. Nielsen, J. Physiol. 542, 3 (2002)

    Article  Google Scholar 

  12. S.W. de Maré, R. Venskutonytė, S. Eltschkner, B.L. de Groot, K. Lindkvist-Petersson, Structure 28, 215 (2020)

    Article  Google Scholar 

  13. L. Janosi, M. Ceccarelli, Biophys. J . 104, 409a (2013)

    Article  Google Scholar 

  14. F. Zhu, E. Tajkhorshid, K. Schulten, Biophys. J . 86, 50 (2004)

    Article  Google Scholar 

  15. M. Ozu, L. Galizia, C. Acuña, G. Amodeo, Cells 7, 209 (2018)

    Article  Google Scholar 

  16. S. Kaptan, M. Assentoft, H.P. Schneider, R.A. Fenton, J.W. Deitmer, N. MacAulay, B.L. de Groot, Structure 23, 2309 (2015)

    Article  Google Scholar 

  17. V. Lindahl, P. Gourdon, M. Andersson, B. Hess, Sci. Rep. 8, 1 (2018)

    Article  Google Scholar 

  18. S. Tornroth-Horsefield, K. Hedfalk, G. Fischer, K. Lindkvist-Petersson, R. Neutze, FEBS Lett. 584, 2580 (2010)

    Article  Google Scholar 

  19. L. Leitao, C. Prista, T.F. Moura, M.C. Loureiro-Dias, G. Soveral, PLoS ONE 7, e33219 (2012)

    Article  ADS  Google Scholar 

  20. M. Ozu, R.A. Dorr, F. Gutierrez, M.T. Politi, R. Toriano, Biophys. J. 104, 85 (2013)

    Article  ADS  Google Scholar 

  21. A. Madeira, T.F. Moura, G. Soveral, Front. Chem. 2016(4), 1 (2016)

    Google Scholar 

  22. J.E. Hall, J.A. Freites, D.J. Tobias, Chem. Rev. 119, 6015 (2019)

    Article  Google Scholar 

  23. M. Bernardi, P. Marracino, M.R. Ghaani, M. Liberti, F. Del Signore, C.J. Burnham, J.A. Gárate, F. Apollonio, N.J. English, J. Chem. Phys. 149, 245102–245111 (2018)

    Article  ADS  Google Scholar 

  24. M.Ø. Jensen, E. Tajkhorshid, K. Schulten, Biophys. J . 85, 2884 (2003)

    Article  Google Scholar 

  25. B.L. De Groot, H. Grubmüller, Curr. Opin. Struct. Biol. 15, 176 (2005)

    Article  Google Scholar 

  26. A. Barati Farimani, N.R. Aluru, E. Tajkhorshid, Appl. Phys. Lett. 105, 083702 (2014)

    Article  ADS  Google Scholar 

  27. J.S. Hub, H. Grubmüller, B.L. De Groot, Handb. Exp. Pharmacol. 190, 57 (2009)

    Article  Google Scholar 

  28. P. Marracino, M. Liberti, E. Trapani, C.J. Burnham, M. Avena, J.A. Garate, F. Apollonio, N.J. English, Int. J. Mol. Sci. 17, 1133 (2016)

    Article  Google Scholar 

  29. M. Hashido, A. Kidera, M. Ikeguchi, Biophys. J . 93, 373 (2007)

    Article  Google Scholar 

  30. C. Rodrigues, A. Filipa Mósca, A.P. Martins, T. Nobre, C. Prista, F. Antunes, A.C. Gasparovic, G. Soveral, Int. J. Mol. Sci. 17, 2090 (2016)

    Article  Google Scholar 

  31. A.F. Mósca, A.D. Almeida, D. Wragg, A.P. Martins, F. Sabir, S. Leoni, T.F. Moura, C. Prista, A. Casini, G. Soveral, Cells 7, 207 (2018)

    Article  Google Scholar 

  32. K. Gotfryd, A. Filipa Mósca, J.W. Missel, S.F. Truelsen, K. Wang, M. Spulber, S. Krabbe, C. Hélix-Nielsen, U. Laforenza, G. Soveral, P.A. Pedersen, P. Gourdon, Nat. Commun. 9, 1 (2018)

    Article  Google Scholar 

  33. D. Alberga, O. Nicolotti, G. Lattanzi, G.P. Nicchia, A. Frigeri, F. Pisani, V. Benfenati, G.F. Mangiatordi, Biochem. Biophys. Acta. 1838, 3052 (2014)

    Article  Google Scholar 

  34. E. Yamamoto, T. Akimoto, Y. Hirano, M. Yasui, K. Yasuoka, Phys. Rev. E 89, 022718–022721 (2014)

    Article  ADS  Google Scholar 

  35. H. Hadidi, R. Kamali, A. Binesh, Proteins: Struct. Funct. Bioinform. 89, 819 (2021)

    Article  Google Scholar 

  36. L. Janosi, M. Ceccarelli, PLoS ONE 8, e59897 (2013)

    Article  ADS  Google Scholar 

  37. H. Hadidi, R. Kamali, Biophys. Chem. 227, 106655 (2021)

    Article  Google Scholar 

  38. F.J. Moss, P. Mahinthichaichan, D.T. Lodowski, T. Kowatz, E. Tajkhorshid, A. Engel, W.F. Boron, A. Vahedi-Faridi, Front Physiol 11, 1 (2020)

    Article  Google Scholar 

  39. M. Falato, R. Chana, L.Y. Chen, RSC Adv. 12, 5 (2022)

    Article  Google Scholar 

  40. Z. Rahimi, A. Lohrasebi, Phys. Chem. Chem. Phys. 22, 25859 (2020)

    Article  Google Scholar 

  41. M.J. Abraham, D. Van der Spoel, E. Lindahl, B. Hess, and the GROMACS development team, GROMACS User Manual version 2016.4, (2017) www.gromacs.org

  42. R.B. Best, X. Zhu, J. Shim, P.E.M. Lopes, J. Mittal, M. Feig, A.D. MacKerell Jr., J. Chem. Theory Comput. 8, 3257 (2012)

    Article  Google Scholar 

  43. M. Pekka, N. Lennart, J. Phys. Chem. A 2001(105), 9954 (2001)

    Google Scholar 

  44. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103, 8577 (1995)

    Article  ADS  Google Scholar 

  45. D.J. Evans, B.L. Holian, J. Chem. Phys. 83, 4069 (1985)

    Article  ADS  Google Scholar 

  46. M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182 (1981)

    Article  ADS  Google Scholar 

  47. W. Humphrey, A. Dalke, K. Schulten, Mol. Graph. 14, 33 (1996)

    Article  Google Scholar 

  48. T.D. Goddard, C.C. Huang, T.E. Ferrin, Structure 13, 473 (2005)

    Article  Google Scholar 

  49. W. You, Z. Tang, C.A. Chang, J. Chem. Theory Comput. 15, 2433 (2019)

    Article  Google Scholar 

  50. J.D. Chodera, W.C. Swope, J.W. Pitera, C. Seok, K.A. Dill, J. Chem. Theory Comput. 3, 26 (2007)

    Article  Google Scholar 

Download references

Funding

There is no significant financial support for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the work.

Corresponding author

Correspondence to Amir Lohrasebi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Ethical approval

We the undersigned declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 298 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, Z., Lohrasebi, A. Impacts of external electric fields on the permeation of glycerol and water molecules through aquaglyceroporin-7: molecular dynamics simulation approach. Eur. Phys. J. E 46, 3 (2023). https://doi.org/10.1140/epje/s10189-023-00261-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00261-2

Navigation