Skip to main content
Log in

Fluctuation-induced hydrodynamic coupling in an asymmetric, anisotropic dumbbell

The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We recently introduced a model of an asymmetric dumbbell made of two hydrodynamically coupled subunits as a minimal model for a macromolecular complex, in order to explain the observation of enhanced diffusion of catalytically active enzymes. It was shown that internal fluctuations lead to a negative contribution to the overall diffusion coefficient and that the fluctuation-induced contribution is controlled by the strength of the interactions between the subunits and their asymmetry. We develop the model by studying the effect of anisotropy on the diffusion properties of a modular structure. Using a moment expansion method we derive an analytic form for the long-time diffusion coefficient of an asymmetric, anisotropic dumbbell and show systematically its dependence on internal and external symmetry. The method provides a tractable, analytical route for studying the stochastic dynamics of dumbbell models. The present work opens the way to more detailed descriptions of the effect of hydrodynamic interactions on the diffusion and transport properties of biomolecules with complex structures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. B. Alberts, A. Johnson, J. Lewis, D. Morgan, M.C. Raff, P. Walter, K. Roberts, Molecular Biology of the Cell (Garland Science, New York, 2014)

  2. H.S. Muddana, S. Sengupta, T.E. Mallouk, A. Sen, P.J. Butler, J. Am. Chem. Soc. 132, 2110 (2010)

    Article  Google Scholar 

  3. S. Sengupta, M.M. Spiering, K.K. Dey, W. Duan, D. Patra, P.J. Butler, D.R. Astumian, S.J. Benkovic, A. Sen, ACS Nano 8, 2410 (2014)

    Article  Google Scholar 

  4. S. Sengupta, K.K. Dey, H.S. Muddana, T. Tabouillot, M.E. Ibele, P.J. Butler, A. Sen, J. Am. Chem. Soc. 135, 1406 (2013)

    Article  Google Scholar 

  5. C. Riedel, R. Gabizon, C.A.M. Wilson, K. Hamadani, K. Tsekouras, S. Marqusee, S. Press, C. Bustamante, Nature 517, 227 (2014)

    Article  ADS  Google Scholar 

  6. R. Golestanian, Phys. Rev. Lett. 115, 108102 (2015)

    Article  ADS  Google Scholar 

  7. A.S. Mikhailov, R. Kapral, Proc. Natl. Acad. Sci. U.S.A. 112, E3639 (2015)

    Article  ADS  Google Scholar 

  8. X. Bai, P.G. Wolynes, J. Chem. Phys. 143, 165101 (2015)

    Article  ADS  Google Scholar 

  9. P. Illien, X. Zhao, K.K. Dey, P.J. Butler, A. Sen, R. Golestanian, Nano Lett. 17, 4415 (2017)

    Article  ADS  Google Scholar 

  10. P. Illien, T. Adeleke-Larodo, R. Golestanian, EPL 119, 40002 (2017)

    Article  ADS  Google Scholar 

  11. H. Brenner, A. Nadim, S. Haber, J. Fluid Mech. 183, 511 (1987)

    Article  ADS  Google Scholar 

  12. B.H. Zimm, J. Chem. Phys. 24, 269 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  13. H.C. Öttinger, J. Chem. Phys. 90, 463 (1989)

    Article  ADS  Google Scholar 

  14. H.C. Öttinger, Colloid Polym. Sci. 267, 1 (1989)

    Article  Google Scholar 

  15. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, International Series of Monographs on Physics, Vol. 73 (Clarendon Press, Oxford, 1986)

  16. G. Wilemski, M. Fixman, J. Chem. Phys. 60, 866 (1974)

    Article  ADS  Google Scholar 

  17. N. Levernier, M. Dolgushev, O. Bénichou, A. Blumen, T. Guérin, R. Voituriez, J. Chem. Phys. 143, 204108 (2015)

    Article  ADS  Google Scholar 

  18. J.G.D.L. Torre, M.C. Lopez, M.M. Tirado, J.J. Freire, Macromolecules 16, 1121 (1983)

    Article  ADS  Google Scholar 

  19. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics, Mechanics of Fluids and Transport Processes (Kluwer Academic, 1973)

  20. S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Dover Publications, Mineola N.Y., 2005)

  21. F. Rago, D. Saltzberg, K.N. Allen, D.R. Tolan, J. Am. Chem. Soc. 137, 13876 (2015)

    Article  Google Scholar 

  22. B.P. Roberts, B.R. Miller, A.E. Roitberg, K.M. Merz, J. Am. Chem. Soc. 134, 9934 (2012)

    Article  Google Scholar 

  23. E. Wajnryb, K.A. Mizerski, P.J. Zuk, P. Szymczak, J. Fluid Mech. 731, R3 (2013)

    Article  ADS  Google Scholar 

  24. J.G.D.L. Torre, V.A. Bloomfield, Biopolymers 16, 1747 (1977)

    Article  Google Scholar 

  25. J.G.D.L. Torre, V.A. Bloomfield, Biopolymers 16, 1765 (1977)

    Article  Google Scholar 

  26. B. Carrasco, J.G. de le Torre, Biophys. J. 76, 3044 (1999)

    Article  ADS  Google Scholar 

  27. J.G.D.L. Torre, V.A. Bloomfield, Biopolymers 16, 1779 (1977)

    Article  Google Scholar 

  28. S. Saha, R. Golestanian, S. Ramaswamy, Phys. Rev. E 89, 062316 (2014)

    Article  ADS  Google Scholar 

  29. A. Ahmadi, M.C. Marchetti, T.B. Liverpool, Phys. Rev. E 74, 061913 (2006)

    Article  ADS  Google Scholar 

  30. M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)

    Article  ADS  Google Scholar 

  31. D. Saintillan, M.J. Shelley, Phys. Fluids 20, 123304 (2008)

    Article  ADS  Google Scholar 

  32. T. Goldfriend, H. Diamant, T.A. Witten, Phys. Rev. E 93, 042609 (2016)

    Article  ADS  Google Scholar 

  33. F. London, Trans. Faraday Soc. 33, 8b (1937)

    Article  Google Scholar 

  34. D.J. Jeffrey, Y. Onishi, J. Fluid Mech. 139, 261 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tunrayo Adeleke-Larodo.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeleke-Larodo, T., Illien, P. & Golestanian, R. Fluctuation-induced hydrodynamic coupling in an asymmetric, anisotropic dumbbell. Eur. Phys. J. E 42, 39 (2019). https://doi.org/10.1140/epje/i2019-11799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11799-5

Keywords

Navigation