Skip to main content
Log in

Convincing evidence for the Halperin-Lubensky-Ma effect at the N-SmA transition in alkyloxycyanobiphenyl binary mixtures via a high-resolution birefringence study

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present new high-resolution experimental data for the temperature behavior of optical birefringence for a series of mixture of the liquid crystals octyloxycyanobiphenyl (8OCB) and nonyloxycyanobiphenyl (9OCB) by using a rotating analyzer technique. The birefringence data have been used to probe the temperature dependence of the nematic order parameter \( S(T)\). We have then arrived at values for possible entropy discontinuities at the nematic-smectic A transition temperature \( T_{NA}\) from the detailed inspection of \( S(T)\) data in the immediate vicinity of \( T_{NA}\). The 9OCB mole fraction dependence of the obtained reduced entropy discontinuities has been shown to be well fitted with a crossover function which is itself consistent with the mean-field free energy expression with a non-zero cubic term arising from the Halperin-Lubensky-Ma (HLM) coupling. The obtained results are in good accordance with existing results from adiabatic scanning calorimetry (ASC). Our birefringence results and determined entropy discontinuities (consistent with calorimetry results) are in striking contrast with the recent birefringence results of Barman et al. (Phase Transit. 91, 58 (2018) published online 16 Aug. 2017) claiming second-order nematic-to-smectic A transitions for all mixtures. In this paper we present a possible explanation for this discrepancy. We have also extracted the effective critical exponent values \( \alpha_{eff}\) characterizing the critical fluctuations near the N-SmA transition for all compositions by using the fact that the temperature derivative of the order parameter \( S(T)\) near \( T_{NA}\) exhibits the same power-law divergence as the specific heat capacity. Measurable latent heat values were extracted from optical birefringence data for mole fractions of 9OCB where the \( \alpha_{eff}\) values are as low as 0.2, which is substantially lower than the tricritical value \( \alpha_{TCP}=0.5\). This is qualitatively different from what has been observed so far in other liquid-crystal systems. Together with ASC data, these pecuilarities of the 8OCB+9OCB system render further convincing evidence for the presence of the HLM coupling effect at the N-SmA transition phase transition line.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edition (Oxford University Press, Oxford, 1993)

  2. P.J. Collings, M. Hird, Introduction to Liquid Crystals: Chemistry and Physics (Taylor and Francis, London, 1997)

  3. S. Kumar (Editor), Liquid Crystals (Cambridge University Press, Cambridge, 2001)

  4. C.W. Garland, G. Nounesis, Phys. Rev. E 49, 2964 (1994) and references therein

    Article  ADS  Google Scholar 

  5. J. Thoen, C. Gordoyiannis, C. Glorieux, Liq. Cryst. 36, 669 (2009) and references therein

    Article  Google Scholar 

  6. M. Marinelli, F. Mercuri, U. Zammit, in Heat Capacities: Liquids, Solutions, and Vapours, edited by E. Wilhelm, T.M. Letcher, (Royal Society of Chemistry, London, 2010) p. 367 and references therein

  7. P. Cusmin, M.R. de la Fuente, J. Salud, M.A. Perez-Jubindo, S. Diez-Berart, D.O. Lopez, J. Chem. Phys. B 111, 8974 (2007)

    Article  Google Scholar 

  8. M.B. Sied et al., J. Phys. Chem. B 109, 16284 (2005)

    Article  Google Scholar 

  9. E. Anesta, G.S. Iannacchione, C.W. Garland, Phys. Rev. E 70, 041703 (2004) and references therein

    Article  ADS  Google Scholar 

  10. P.G. de Gennes, Mol. Cryst. Liq. Cryst. 21, 49 (1973)

    Article  Google Scholar 

  11. K. Kobayashi, Phys. Lett. A 31, 125 (1970)

    Article  ADS  Google Scholar 

  12. W.L. Mac Millan, Phys. Rev. A 4, 1238 (1971)

    Article  ADS  Google Scholar 

  13. B.I. Halperin, T.C. Lubensky, S.K. Ma, Phys. Rev. Lett. 32, 292 (1974)

    Article  ADS  Google Scholar 

  14. B.I. Halperin, T.C. Lubensky, Solid State Commun. 14, 997 (1974)

    Article  ADS  Google Scholar 

  15. M.A. Anisimov, V.P. Voronov, E.E. Gorodetskii, V.E. Podneks, F. Kholmurodov, JETP Lett. 45, 425 (1987)

    ADS  Google Scholar 

  16. J. Thoen, H. Marynissen, W. Van Dael, Phys. Rev. Lett. 52, 204 (1984)

    Article  ADS  Google Scholar 

  17. H. Marynissen, J. Thoen, W. Van Dael, Mol. Cryst. Liq. Cryst. 124, 195 (1985)

    Article  Google Scholar 

  18. M.A. Anisimov, P.E. Cladis, E.E. Gorodetskii, D.A. Huse, V.E. Podneks, V.G. Taratuta, W. van Saarloos, V.P. Voronov, Phys. Rev. A 41, 6749 (1990)

    Article  ADS  Google Scholar 

  19. M.A. Anisimov, V.P. Voronov, A.O. Kulkov, V.N. Pethukhov, F. Kholmurodov, Mol. Cryst. Liq. Cryst. 150B, 399 (1987)

    Google Scholar 

  20. N. Tamblin, P. Oswald, A. Miele, J. Bechhoefer, Phys. Rev. E 51, 2223 (1995)

    Article  ADS  Google Scholar 

  21. P. Oswald, P. Pieranski, Smectic and Columnar Liquid Crystals (Taylor & Francis, Boca Raton, FL, 2006)

  22. A. Yethiraj, J. Bechhoefer, Mol. Cryst. Liq. Cryst. 304, 301 (1997)

    Article  Google Scholar 

  23. A. Yethiraj, J. Bechhoefer, Phys. Rev. Lett. 84, 3642 (2000)

    Article  ADS  Google Scholar 

  24. A. Yethiraj, R. Mukhopadhyay, J. Bechhoefer, Phys. Rev. E 65, 021702 (2002)

    Article  ADS  Google Scholar 

  25. I. Lelidis, Phys. Rev. Lett. 86, 1267 (2001)

    Article  ADS  Google Scholar 

  26. J. Thoen, H. Marynissen, W. Van Dael, Phys. Rev. A 26, 2886 (1982)

    Article  ADS  Google Scholar 

  27. G. Cordoyiannis, C.S.P. Tripathi, C. Glorieux, J. Thoen, Phys. Rev. E 82, 031707 (2010)

    Article  ADS  Google Scholar 

  28. C.S.P. Tripathi, P. Losada-Perez, J. Leys, G. Cordoyiannis, C. Glorieux, J. Thoen, Eur. Phys. J. E 35, 54 (2012)

    Article  Google Scholar 

  29. M.C. Çetinkaya, S. Yildiz, H. Özbek, P. Losada-Perez, J. Leys, J. Thoen, Phys. Rev. E 88, 042502 (2013)

    Article  ADS  Google Scholar 

  30. S. Yildiz, M.C. Çetinkaya, S. Üstünel, H. Özbek, J. Thoen, Phys. Rev. E 93, 062706 (2016)

    Article  ADS  Google Scholar 

  31. M.B. Sied, J. Salud, D.O. Lopez, M. Barrio, J.L. Tamarit, Phys. Chem. Chem. Phys. 4, 2587 (2002)

    Article  Google Scholar 

  32. J. Salud, D.O. Lopez, S. Diez-Berart, M.R. de la Fuente, Liq. Cryst. 40, 293 (2013)

    Article  Google Scholar 

  33. M.B. Sied, D.O. Lopez, J.L. Tamarit, M. Barrio, Liq. Cryst. 29, 57 (2002)

    Article  Google Scholar 

  34. P. Cusmin et al., J. Phys. Chem. B 110, 26194 (2006)

    Article  Google Scholar 

  35. J. Thoen, Int. J. Mod. Phys. B 9, 2157 (1995)

    Article  ADS  Google Scholar 

  36. P.S. Clegg et al., Phys. Rev. E 67, 021703 (2003)

    Article  ADS  Google Scholar 

  37. R.J. Birgeneau, C.W. Garland, G.B. Kasting, B.M. Ocko, Phys. Rev. A 24, 2624 (1981)

    Article  ADS  Google Scholar 

  38. C.W. Garland, G.B. Kasting, K.J. Lushington, Phys. Rev. Lett. 43, 1420 (1979)

    Article  ADS  Google Scholar 

  39. D.L. Johnson, C.F. Hayes, R.J. deHoff, C.A. Schantz, Phys. Rev. B 18, 4902 (1978)

    Article  ADS  Google Scholar 

  40. J.D. LeGrange, J.M. Mochel, Phys. Rev. Lett. 45, 35 (1980)

    Article  ADS  Google Scholar 

  41. J.D. LeGrange, J.M. Mochel, Phys. Rev. A 23, 3215 (1981)

    Article  ADS  Google Scholar 

  42. A. Zywocinski, S.A. Wieczorek, J. Stecki, Phys. Rev. A 36, 1901 (1987)

    Article  ADS  Google Scholar 

  43. B. Barman, S.K. Sarkar, M.K. Das, Phase Transit. 91, 58 (2018) published online 16 August 2017

    Article  Google Scholar 

  44. S. Erkan, M. Çetinkaya, S. Yildiz, H. Özbek, Phys. Rev. E 86, 041705 (2012)

    Article  ADS  Google Scholar 

  45. K.C. Lim, J.T. Ho, Phys. Rev. Lett. 40, 944 (1978)

    Article  ADS  Google Scholar 

  46. K.C. Lim, J.T. Ho, Mol. Cryst. Liq. Cryst. 47, 173 (1978)

    Article  Google Scholar 

  47. M. Vuks, Opt. Spectrosc. 20, 361 (1966)

    ADS  Google Scholar 

  48. S. Chandrasekhar, N.V. Madhsudana, J. Phys. Colloq. 30, C4 (1969)

    Article  Google Scholar 

  49. A. Chakraborty, S. Chakraborty, M.K. Das, Phys. Rev. E 91, 032503 (2015)

    Article  ADS  Google Scholar 

  50. H. Özbek, S. Üstünel, E. Kutlu, M.C. Çetinkaya, J. Mol. Liq. 199, 275 (2014)

    Article  Google Scholar 

  51. S. Singh, Phys. Rep. 324, 107 (2000)

    Article  ADS  Google Scholar 

  52. B.V. Roie, J. Leys, K. Denolf, C. Glorieux, G. Pitsi, J. Thoen, Phys. Rev. E 72, 041702 (2005)

    Article  ADS  Google Scholar 

  53. M. Marinelli, F. Mercuri, Phys. Rev. E 61, 1616 (2000)

    Article  ADS  Google Scholar 

  54. P.K. Mukherjee, T.B. Mukherjee, Phys. Rev. B 52, 9964 (1995)

    Article  ADS  Google Scholar 

  55. I. Chirtoc, M. Chirtoc, C. Glorieux, J. Thoen, Liq. Cryst. 31, 229 (2004)

    Article  Google Scholar 

  56. S. Yildiz, H. Özbek, C. Glorieux, J. Thoen, Liq. Cryst. 34, 611 (2007)

    Article  Google Scholar 

  57. M. Simoes, D.S. Simeao, Phys. Rev. E 74, 051701 (2006)

    Article  ADS  Google Scholar 

  58. S.K. Sarkar, M.K. Das, Phase Transit. 89, 910 (2016)

    Article  Google Scholar 

  59. M.K. Das, P.C. Barman, S.K. Sarkar, Liq. Cryst. 43, 1268 (2016)

    Article  Google Scholar 

  60. S.K. Sarkar, A. Chakraborty, M.K. Das, Liq. Cryst. 43, 22 (2016)

    Article  Google Scholar 

  61. S.K. Sarkar, P.C. Barman, M.K. Das, Physica B 446, 80 (2014)

    Article  ADS  Google Scholar 

  62. M.S. Zakerhamidi, H. Rahimzadeh, Mol. Cryst. Liq. Cryst. 569, 92 (2012)

    Article  Google Scholar 

  63. M.S. Zakerhamidi, H. Rahimzadeh, J. Mol. Liq. 172, 41 (2012)

    Article  Google Scholar 

  64. M.K. Das, P.C. Barman, S.K. Sarkar, Eur. Phys. J. B 88, 175 (2015)

    Article  ADS  Google Scholar 

  65. S. Chakraborty, A. Chakraborty, M.K. Das, W. Weissflog, J. Mol. Liq. 219, 608 (2016)

    Article  Google Scholar 

  66. E.F. Gramsbergen, W.H. de Jeu, J. Chem. Soc. Faraday Trans. 2 84, 1015 (1988)

    Article  Google Scholar 

  67. D.A. Dunmur, in Physical Properties of Liquid Crystals: Nematics, edited by D.A. Dunmur, A. Fukuda, G.R. Luckhurst (The Institution of Electrical Engineers, London, 2002)

  68. A.V. Kityk, P. Huber, Appl. Phys. Lett. 97, 153124 (2010)

    Article  ADS  Google Scholar 

  69. A.V. Kityk et al., Soft Matter 10, 4522 (2010)

    Article  ADS  Google Scholar 

  70. S. Calus, B. Jablonska, M. Busch, D. Rau, P. Huber, A.V. Kityk, Phys. Rev. E 89, 062501 (2014)

    Article  ADS  Google Scholar 

  71. P. Huber, M. Busch, S. Calus, A.V. Kityk, Phys. Rev. E 87, 042502 (2013)

    Article  ADS  Google Scholar 

  72. S. Yildiz, E.O. Zayim, Ö. Pekcan, H. Özbek, Int. J. Mod. Phys. B 24, 4305 (2010)

    Article  ADS  Google Scholar 

  73. I.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties (Oxford University Press, Oxford, 2010)

  74. P.H. Keyes, Phys. Lett. A 67, 132 (1978)

    Article  ADS  Google Scholar 

  75. M.A. Anisimov, S.R. Garber, V.S. Esipov, V.M. Mamnitskii, G.I. Ovodov, L.A. Smolenko, E.L. Sorkin, JETP 45, 1042 (1977)

    ADS  Google Scholar 

  76. M.A. Anisimov, Mol. Cryst. Liq. Cryst. A 162, 1 (1988) Special Topics XXXI

    Google Scholar 

  77. D.S. Simeao, M. Simoes, Mol. Cryst. Liq. Cryst. 576, 88 (2013)

    Article  Google Scholar 

  78. M. Simoes, D.S. Simeao, K.E. Yamaguti, Liq. Cryst. 38, 935 (2011)

    Article  Google Scholar 

  79. S.J. Rzoska, A.D. Rzoska, P.K. Mukherjee, D.O. Lopez, J.C. Martinez-Garcia, J. Phys.: Condens. Matter 25, 245105 (2013)

    ADS  Google Scholar 

  80. K.K. Chan, M. Deutsch, B.M. Ocko, P.S. Pershan, L.B. Sorensen, Phys. Rev. Lett. 54, 920 (1985)

    Article  ADS  Google Scholar 

  81. M.E. Fisher, A. Aherony, Phys. Rev. Lett. 31, 1238 (1973)

    Article  ADS  Google Scholar 

  82. A. Zywocinski, S.A. Wieczorek, J. Phys. Chem. B 101, 6970 (1997)

    Article  Google Scholar 

  83. J. Thoen, in Heat Capacities: Liquids, Solutions, and Vapours, edited by E. Wilhelm, T.M. Letcher (Royal Society of Chemistry, London, 2010) p. 287 and references therein

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yildiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetinkaya, M.C., Ustunel, S., Ozbek, H. et al. Convincing evidence for the Halperin-Lubensky-Ma effect at the N-SmA transition in alkyloxycyanobiphenyl binary mixtures via a high-resolution birefringence study. Eur. Phys. J. E 41, 129 (2018). https://doi.org/10.1140/epje/i2018-11738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11738-0

Keywords

Navigation