Skip to main content
Log in

Rheology of granular materials composed of crushable particles

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We investigate sheared granular materials composed of crushable particles by means of contact dynamics simulations and the bonded-cell model for particle breakage. Each particle is paved by irregular cells interacting via cohesive forces. In each simulation, the ratio of the internal cohesion of particles to the confining pressure, the relative cohesion, is kept constant and the packing is subjected to biaxial shearing. The particles can break into two or more fragments when the internal cohesive forces are overcome by the action of compressive force chains between particles. The particle size distribution evolves during shear as the particles continue to break. We find that the breakage process is highly inhomogeneous both in the fragment sizes and their locations inside the packing. In particular, a number of large particles never break whereas a large number of particles are fully shattered. As a result, the packing keeps the memory of its initial particle size distribution, whereas a power-law distribution is observed for particles of intermediate size due to consecutive fragmentation events whereby the memory of the initial state is lost. Due to growing polydispersity, dense shear bands are formed inside the packings and the usual dilatant behavior is reduced or cancelled. Hence, the stress-strain curve no longer passes through a peak stress, and a progressive monotonic evolution towards a pseudo-steady state is observed instead. We find that the crushing rate is controlled by the confining pressure. We also show that the shear strength of the packing is well expressed in terms of contact anisotropies and force anisotropies. The force anisotropy increases while the contact orientation anisotropy declines for increasing internal cohesion of the particles. These two effects compensate each other so that the shear strength is nearly independent of the internal cohesion of particles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Elghezal, M. Jamei, I.-O. Georgopoulos, Granular Matter 15, 685 (2013)

    Article  Google Scholar 

  2. Yukio Nakata, Masayuki Hyodo, Adrian F.L. Hyde, Yoshinori Kato, Hidekazu Murata, Soils Found. 41, 69 (2001)

    Article  Google Scholar 

  3. Y.P. Cheng, Y. Nakata, M.D. Bolton, Géotechnique 53, 633 (2003)

    Article  Google Scholar 

  4. Y.P. Cheng, M.D. Bolton, Y. Nakata, Géotechnique 54, 131 (2004)

    Article  Google Scholar 

  5. D.W. Fuerstenau, O. Gutsche, P.C. Kapur, Confined particle bed comminution under compressive loads, in Comminution 1994, edited by K.S.E. Forssberg, K. Schnert (Elsevier, Amsterdam, 1996) pp. 521--537

  6. C. Hosten, H. Cimilli, Int. J. Min. Process. 91, 81 (2009)

    Article  Google Scholar 

  7. Arghya Das, Giang D. Nguyen, Itai Einav, J. Geophys. Res.: Solid Earth 116, B08203 (2011)

    ADS  Google Scholar 

  8. O. Ben-Nun, I. Einav, A. Tordesillas, Phys. Rev. Lett. 104, 108001 (2010)

    Article  ADS  Google Scholar 

  9. V.P.B. Esnault, J.-N. Roux, Mech. Mater. 66, 88 (2013)

    Article  Google Scholar 

  10. Poul V. Lade, Jerry A. Yamamuro, Paul A. Bopp, J. Geotech. Eng. 122, 309 (1996)

    Article  Google Scholar 

  11. Fawad A. Chuhan, Arild Kjeldstad, Knut Bjørlykke, Kaare Høeg, Mar. Pet. Geol. 19, 39 (2002)

    Article  Google Scholar 

  12. N. Cho, C.D. Martin, D.C. Sego, Int. J. Rock Mech. Min. Sci. 45, 1335 (2008)

    Article  Google Scholar 

  13. Gang Ma, Wei Zhou, Xiao-Lin Chang, Comput. Geotech. 61, 132 (2014)

    Article  Google Scholar 

  14. M.R. Coop, K.K. Sorensen, T. Bodas Freitas, G. Georgoutsos, Géotechnique 54, 157 (2004)

    Article  Google Scholar 

  15. Charles Sammis, Geoffrey King, Ronald Biegel, Pure Appl. Geophys. 125, 777 (1987)

    Article  ADS  Google Scholar 

  16. Luis E. Vallejo, Sebastian Lobo-Guerrero, Kevin Hammer, Int. J. Geomech. 6, 435 (2006)

    Article  Google Scholar 

  17. Junyu Huang, Songlin Xu, Shisheng Hu, Mech. Mater. 68, 15 (2014)

    Article  Google Scholar 

  18. K.H. Wohletz, M.F. Sheridan, W.K. Brown, J. Geophys. Res.: Solid Earth 94, 15703 (1989)

    Article  Google Scholar 

  19. Sidney Redner, Statistical theory of fragmentation, in Disorder and Fracture (Springer, 1990) pp. 31--48

  20. J.A. Astrom, H.J. Herrmann, Eur. Phys. J. B 5, 551 (1998)

    Article  ADS  Google Scholar 

  21. M. Gorokhovski, Fragmentation under the scaling symmetry and turbulent cascade with intermittency, Technical Report, DTIC Document, 2003

  22. Itai Einav, J. Mech. Phys. Solids 55, 1274 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Predrag Elek, Slobodan Jaramaz, FME Trans. 37, 129 (2009)

    Google Scholar 

  24. N.R.A. Bird, C.W. Watts, A.M. Tarquis, A.P. Whitmore, Vadose Zone J. 8, 197 (2009)

    Article  Google Scholar 

  25. Ferenc Kun, Imre Varga, Sabine Lennartz-Sassinek, Ian G. Main, Phys. Rev. E 88, 062207 (2013)

    Article  ADS  Google Scholar 

  26. Ferenc Kun, Imre Varga, Sabine Lennartz-Sassinek, Ian G. Main, Phys. Rev. Lett. 112, 065501 (2014)

    Article  ADS  Google Scholar 

  27. Francesca Casini, Giulia M.B. Viggiani, Sarah M. Springman, Granular Matter 15, 661 (2013)

    Article  Google Scholar 

  28. Benjy Marks, Itai Einav, Geophys. Res. Lett. 42, 274 (2015)

    Article  ADS  Google Scholar 

  29. Luis E. Vallejo, Sebastian Lobo-Guerrero, Zamri Chik, A network of fractal force chains and their effect in granular materials under compression, in Fractals in Engineering (Springer, 2005) pp. 67--80

  30. F. Radjaï, M. Jean, J.-J. Moreau, S. Roux, Phys. Rev. Lett. 77, 274 (1996)

    Article  ADS  Google Scholar 

  31. Olivier Tsoungui, Denis Vallet, Jean-Claude Charmet, Stphane Roux, C. R. Acad. Sci., Ser. IIB 325, 457 (1997)

    ADS  Google Scholar 

  32. F. Radjaï, D.E. Wolf, M. Jean, J.J. Moreau, Phys. Rev. Lett. 80, 61 (1998)

    Article  ADS  Google Scholar 

  33. C. Thornton, M.T. Ciomocos, M.J. Adams, Powder Technol. 140, 258 (2004)

    Article  Google Scholar 

  34. Ivana Agnolin, Jean-Noël Roux, Phys. Rev. E 76, 061302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  35. Vincent Richefeu, Moulay Saïd El Youssoufi, Farhang Radjai, Phys. Rev. E 73, 051304 (2006)

    Article  ADS  Google Scholar 

  36. C. Voivret, F. Radjaï, J.-Y. Delenne, M.S. El Youssoufi, Phys. Rev. Lett. 102, 178001 (2009)

    Article  ADS  Google Scholar 

  37. C. Thornton, K.K. Yin, M.J. Adams, J. Phys. D: Appl. Phys. 29, 424 (1996)

    Article  ADS  Google Scholar 

  38. R. Moreno, M. Ghadiri, S.J. Antony, Powder Technol. 130, 132 (2003)

    Article  Google Scholar 

  39. L. Liu, K.D. Kafui, C. Thornton, Powder Technol. 199, 189 (2010)

    Article  Google Scholar 

  40. Wei Zhou, Lifu Yang, Gang Ma, Kun Xu, Zhiqiang Lai, Xiaolin Chang, Granular Matter 19, 25 (2017)

    Article  Google Scholar 

  41. Ming Xu, Juntian Hong, Erxiang Song, Comput. Geotech. 89, 113 (2017) (Supplement C)

    Article  Google Scholar 

  42. D.O. Potyondy, P.A. Cundall, Int. J. Rock Mech. Min. Sci. 41, 1329 (2004)

    Article  Google Scholar 

  43. N. Cho, C.D. Martin, D.C. Sego, Int. J. Rock Mech. Min. Sci. 44, 997 (2007)

    Article  Google Scholar 

  44. Manoj Khanal, Wolfgang Schubert, Jurgen Tomas, Miner. Eng. 20, 179 (2007)

    Article  Google Scholar 

  45. M.D. Bolton, Y. Nakata, Y.P. Cheng, Géotechnique 58, 471 (2008)

    Article  Google Scholar 

  46. Steffen Abe, Karen Mair, Geophys. Res. Lett. 36, L23302 (2009)

    Article  ADS  Google Scholar 

  47. Jianfeng Wang, Haibin Yan, Soils Found. 52, 644 (2012)

    Article  Google Scholar 

  48. G. Timár, F. Kun, H.A. Carmona, H.J. Herrmann, Phys. Rev. E 86, 016113 (2012)

    Article  ADS  Google Scholar 

  49. Matthew J. Metzger, Benjamin J. Glasser, Powder Technol. 217, 304 (2012)

    Article  Google Scholar 

  50. Takao Ueda, Takashi Matsushima, Yasuo Yamada, Granular Matter 15, 675 (2013)

    Article  Google Scholar 

  51. S.A. Galindo-Torres, D.M. Pedroso, D.J. Williams, L. Li, Comput. Phys. Commun. 183, 266 (2012)

    Article  ADS  Google Scholar 

  52. Gang Ma, Wei Zhou, Richard A. Regueiro, Qiao Wang, Xiaolin Chang, Powder Technol. 308, 388 (2017)

    Article  Google Scholar 

  53. Ferenc Kun, Hans J. Herrmann, Comput. Methods Appl. Mech. Eng. 138, 3 (1996)

    Article  Google Scholar 

  54. Bart Van de Steen, André Vervoort, J.A.L. Napier, Int. J. Fract. 108, 165 (2001)

    Article  Google Scholar 

  55. G.A. D’Addetta, F. Kun, E. Ramm, Granular Matter 4, 77 (2002)

    Article  Google Scholar 

  56. S.A. Galindo-Torres, D.M. Pedroso, D.J. Williams, L. Li, Comput. Phys. Commun. 183, 266 (2012)

    Article  ADS  Google Scholar 

  57. Duc-Hanh Nguyen, Emilien Azéma, Philippe Sornay, Farhang Radjai, Phys. Rev. E 91, 022203 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  58. E. Azema, N. Estrada, F. Radjai, Phys. Rev. E 86, 041301 (2012)

    Article  ADS  Google Scholar 

  59. J.J. Moreau, Eur. J. Mech. A Solids 13, 93 (1994)

    Google Scholar 

  60. M. Jean, Comput. Methods Appl. Mech. Eng. 177, 235 (1999)

    Article  ADS  Google Scholar 

  61. Farhang Radjai, Vincent Richefeu, Mech. Mater. 41, 715 (2009)

    Article  Google Scholar 

  62. Farhang Radjaï, Frédéric Dubois, Discrete Numerical Modeling of Granular Materials (Wiley-ISTE, New-York, 2011) ISBN: 978-1-84821-260-2

  63. L. Staron, J.-P. Vilotte, F. Radjaï, Phys. Rev. Lett. 89, 204302 (2002)

    Article  ADS  Google Scholar 

  64. A. Taboada, K.J. Chang, F. Radjaï, F. Bouchette, J. Geophys. Res. 110, B09202 (2005)

    Article  ADS  Google Scholar 

  65. M. Renouf, P. Alart, Comput. Methods Appl. Mech. Eng. 194, 2019 (2005)

    Article  ADS  Google Scholar 

  66. E. Azéma, F. Radjaï, R. Peyroux, F. Dubois, G. Saussine, Phys. Rev. E 74, 031302 (2006)

    Article  ADS  Google Scholar 

  67. E. Azéma, F. Radjaï, R. Peyroux, V. Richefeu, G. Saussine, Eur. Phys. J. E 26, 327 (2008)

    Article  Google Scholar 

  68. Nicolas Estrada, Alfredo Taboada, Farhang Radjaï, Phys. Rev. E 78, 021301 (2008)

    Article  ADS  Google Scholar 

  69. E. Azéma, F. Radjaï, Phys. Rev. E 81, 051304 (2010)

    Article  ADS  Google Scholar 

  70. E. Azéma, F. Radjaï, Phys. Rev. E 85, 031303 (2012)

    Article  ADS  Google Scholar 

  71. N. Estrada, E. Azéma, F. Radjaï, A. Taboada, Phys. Rev. E 84, 011306 (2011)

    Article  ADS  Google Scholar 

  72. B. Saint-Cyr, J.-Y. Delenne, C. Voivret, F. Radjai, P. Sornay, Phys. Rev. E 84, 041302 (2011)

    Article  ADS  Google Scholar 

  73. Juan Carlos Quezada, Pierre Breul, Gilles Saussine, Farhang Radjai, Phys. Rev. E 86, 031308 (2012)

    Article  ADS  Google Scholar 

  74. C. Voivret, F. Radjaï, J.-Y. Delenne, M.S. El Youssoufi, Phys. Rev. Lett. 102, 178001 (2009)

    Article  ADS  Google Scholar 

  75. Dirk Kadau, Guido Bartels, Lothar Brendel, Dietrich E. Wolf, Comput. Phys. Commun. 147, 190 (2002)

    Article  ADS  Google Scholar 

  76. Ivar Bratberg, Farhang Radjai, Alex Hansen, Phys. Rev. E 66, 031303 (2002)

    Article  ADS  Google Scholar 

  77. Duc-Hanh Nguyen, Emilien Azéma, Farhang Radjai, Philippe Sornay, Phys. Rev. E 90, 012202 (2014)

    Article  ADS  Google Scholar 

  78. Duc-Hanh Nguyen, Florian Fichot, Vincent Topin, Nucl. Eng. Des. 313, 96 (2017)

    Article  Google Scholar 

  79. Eric Clement, Curr. Opin. Colloid Interface Sci. 4, 294 (1999)

    Article  Google Scholar 

  80. GDR-MiDi, Eur. Phys. J. E 14, 341 (2004)

    Article  Google Scholar 

  81. J.J. Moreau, Numerical investigation of shear zones in granular materials, in Friction, Arching, Contact Dynamics, edited by D.E. Wolf, P. Grassberger (World Scientific, Singapore, 1997) pp. 233--247

  82. L. Staron, F. Radjaï, Phys. Rev. E 72, 041308 (2005)

    Article  ADS  Google Scholar 

  83. Da-Mang Lee, The angles of friction of granular fills, PhD Thesis, University of Cambridge, 1992

  84. J.P. Bardet, J. Proubet, Géotechnique 41, 599 (1991)

    Article  Google Scholar 

  85. J.P. Bardet, J. Proubet, J. Eng. Mech. 118, 397 (1992)

    Article  Google Scholar 

  86. A.N.B. Poliakov, H.J. Herrmann, Geophys. Res. Lett. 21, 2143 (1994)

    Article  ADS  Google Scholar 

  87. H.J. Herrmann, J.A. Astrom, R. Mahmoodi Baram, Physica A: Stat. Mech. Appl. 344, 516 (2004)

    Article  ADS  Google Scholar 

  88. J. Desrues, G.S. Viggiani, Int. J. Numer. Anal. Methods Geomech. 28, 279 (2004)

    Article  Google Scholar 

  89. D.L. Turcotte, J. Geophys. Res.: Solid Earth 91, 1921 (1986)

    Article  Google Scholar 

  90. H.J. Herrmann, A.N.B. Poliakov, S. Roux, Fractals 3, 821 (1995)

    Article  Google Scholar 

  91. G.R. McDowell, M.D. Bolton, D. Robertson, J. Mech. Phys. Solids 44, 2079 (1996)

    Article  ADS  Google Scholar 

  92. Tetsuo Akiyama, Keiko M. Aoki, Tatsusaburo Iguchi, Kazuo Nishimoto, Chem. Eng. Sci. 51, 3551 (1996)

    Article  Google Scholar 

  93. Leo Rothenburg, R.J. Bathurst, Géotechnique 39, 601 (1989)

    Article  Google Scholar 

  94. F. Radjaï, Multicontact dynamics, in Physics of Dry Granular Media, edited by H.J. Herrmann (Kluwer Academic Publishers, Netherlands, 1998) pp. 305--312

  95. H. Ouadfel, L. Rothenburg, Mech. Mater. 33, 201 (2001)

    Article  Google Scholar 

  96. E. Azéma, F. Radjaï, R. Peyroux, G. Saussine, Phys. Rev. E 76, 011301 (2007)

    Article  ADS  Google Scholar 

  97. E. Azema, F. Radjai, B. Saint-Cyr, J.-Y. Delenne, P. Sornay, Phys. Rev. E 87, 052205 (2013)

    Article  ADS  Google Scholar 

  98. Duc-Hanh Nguyen, Emilien Azéma, Philippe Sornay, Farhang Radjai, Phys. Rev. E 91, 032203 (2015)

    Article  ADS  Google Scholar 

  99. Farhang Radjai, Vincent Richefeu, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 367, 5123 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc-Hanh Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, DH., Azéma, É., Sornay, P. et al. Rheology of granular materials composed of crushable particles. Eur. Phys. J. E 41, 50 (2018). https://doi.org/10.1140/epje/i2018-11656-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11656-1

Keywords

Navigation