Skip to main content
Log in

Issues in data expansion in understanding criticality in biological systems

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

At the point of a second-order phase transition also termed as a critical point, systems display long-range order and their macroscopic behaviors are independent of the microscopic details making up the system. Due to these properties, it has long been speculated that biological systems that show similar behavior despite having very different microscopics, may be operating near a critical point. Recent methods in neuroscience are making it possible to explore whether criticality exists in neural networks. Despite being large in size, many datasets are only a minute sample of the neural system and methods have to be developed to expand these datasets to study criticality. In this work we develop an analytical method of expanding a dataset to the large N limit to make statements about the critical nature of the dataset. We show that different ways of expanding the dataset while keeping its variance and mean fixed yield different results regarding criticality. This hence casts doubts on the established procedures for deducing criticality of biological systems through expansion of finite-sized datasets.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Schwab, I. Nemenman, P. Mehta, Phys. Rev. Lett. 113, 068102 (2014)

    Article  ADS  Google Scholar 

  2. I. Mastromatteo, M. Marsili, J. Stat. Mech. 10, P10012 (2011)

    Article  Google Scholar 

  3. T. Mora, S. Deny, O. Marre, Phys. Rev. Lett. 114, 07815 (2015)

    Article  Google Scholar 

  4. M. Nykter, N.D. Price, M. Aldana, S.A. Ramsey, S.A. Kauffman, L.E. Hood, O. Yli-Harja, I. Shmulevich, Proc. Natl. Acad. Sci. U.S.A. 105, 1897 (2008)

    Article  ADS  Google Scholar 

  5. R.V. Sol, S.C. Manrubia, M. Benton, S. Kauffman, P. Bak, Trends Ecol. Evol. 14, 156 (1999)

    Article  Google Scholar 

  6. M.G. Kitzbichler, M.L. Smith, S.R. Christensen, E. Bullmore, PLoS Comput. Biol. 5, 1000314 (2009)

    Article  ADS  Google Scholar 

  7. G. Tkacik, E. Schneidman, M.J. Berry II, W. Bialek, arXiv preprint q-bio/0611072 (2006)

  8. E. Schneidman, M. Berry II, R. Segev, W. Bialek, Nature 440, 1007 (2006)

    Article  ADS  Google Scholar 

  9. G. Tkačik, O. Marre, T. Mora, D. Amodel, M. Berry II, W. Bialek, J. Stat. Mech. 2013, P03011 (2013)

    Article  Google Scholar 

  10. G. Tkačik, O. Marre, T. Mora, D. Amodel, M. Berry II, W. Bialek, Proc. Natl. Acad. Sci. U.S.A. 112, 11508 (2015)

    Article  ADS  Google Scholar 

  11. G. Tkačik, O. Marre, E. Schneidman, D. Amodel, M. Berry II, W. Bialek, PloS Comput. Biol. 10, e1003408 (2014)

    Article  Google Scholar 

  12. John Cardy (Editor), Finite-Size Scaling, Vol. 2 (Elsevier, 2012)

  13. M. Nonnenmacher, C. Behrens, P. Berens, M. Bethge, J. Macke, PloS Comput. Biol. 13, e1005718 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav Wasnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasnik, V. Issues in data expansion in understanding criticality in biological systems. Eur. Phys. J. E 41, 13 (2018). https://doi.org/10.1140/epje/i2018-11621-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11621-0

Keywords

Navigation