Skip to main content
Log in

Stability of a charged drop near a conductor wall

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The effect of conductor boundaries on the deformation and stability of a charged drop is presented. The motivation for such a study is the occurrence of a charged conductor drop near a conductor wall in experiments (Millikan-like set-up in studies on Rayleigh break-up) and applications (such as electrospraying, ink-jet printing and ion mass spectroscopy). In the present work, analytical (linear stability analysis (LSA)) and numerical methods (boundary element method (BEM)) are used to understand the instability. Two kinds of boundaries are studied: a spherical, conducting, grounded enclosure (similar to a spherical capacitor) and a planar conducting wall. The LSA of a charged drop placed at the center of a spherical cavity shows that the Rayleigh critical charge (corresponding to the most unstable l = 2 Legendre mode) is reduced as the non-dimensional distance \( \hat{d}\) = \( {\frac{{b-a}}{{a}}}\) decreases, where a and b are the radii of the drop and spherical cavity, respectively. The critical charge is independent of the assumptions of constant charge or constant potential conditions. The trans-critical bifurcation diagram, constructed using BEM, shows that the prolate shapes are subcritically unstable over a much wider range of charge as \( \hat{d}\) decreases. The study is then extended to the stability of a charged conductor drop near a flat conductor wall. Analytical theory for this case is difficult and the stability as well as the bifurcation diagram are constructed using BEM. Moreover, the induced charges in the conductor wall lead to attraction of the drop to the wall, thereby making it difficult to conduct a systematic analysis. The drop is therefore assumed to be held at its position by an external force such as the electric field. The case when the applied field is much smaller than the field due to inherent charge on the drop ( \( {\frac{{a^3\rho g}}{{3\epsilon_0\psi^2}}}\) ≪ 1 is considered. The wall breaks the fore-aft symmetry in the problem, and equilibrium, predominantly prolate shapes corresponding to the legendre mode, l = 2 , are observed. The deformation increases with increasing charge on the drop. The breakup of the prolate equilibrium shapes is independent of the legendre modes of the initial perturbations. The prolate perturbations are subcritically unstable. Since the equilibrium prolate shapes cannot continuously exchange instability with equilibrium oblate shapes, an imperfect transcritical bifurcation is observed. A variety of highly deformed equilibrium oblate shapes are predicted by the BEM calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ashgriz, Handbook of Atomization and Sprays (Springer, New York, 2011)

  2. A. Kazutoshi, J. Electrost. 18, 63 (1986)

    Article  Google Scholar 

  3. J.W.S. Rayleigh, Philos. Mag. 14, 184 (1882)

    Google Scholar 

  4. D. Duft, T. Achtzehn, R. Muller, B.A. Huber, T. Leisner, Nature 421, 128 (2003)

    Article  ADS  Google Scholar 

  5. E. Giglio, B. Gervais, J. Rangama, B. Manil, B.A. Huber, D. Duft, R. Muller, T. Leisner, C. Guet, Phys. Rev. E. 77, 036319 (2008)

    Article  ADS  Google Scholar 

  6. A. Doyle, D.R. Moffett, B. Vonnegut, J. Colloid Sci. 19, 136 (1964)

    Article  Google Scholar 

  7. C.B. Richardson, H. Pigg, R.L. Hightower, Proc. R. Soc. London, Ser. A 422, 319 (1988)

    ADS  Google Scholar 

  8. J.A. Tsamopoulos, T.R. Akylas, R.A. Brown, Proc. R. Soc. London, Ser. A 401, 67 (1985)

    Article  ADS  Google Scholar 

  9. A. Gomez, K. Tang, Phys. Fluids 6, 404 (1994)

    Article  ADS  Google Scholar 

  10. K. Tang, A. Gomez, Phys. Fluids 6, 2317 (1994)

    Article  ADS  Google Scholar 

  11. W. Deng, A. Gomez, Int. J. Heat Mass Transfer 54, 2270 (2011)

    Article  Google Scholar 

  12. S. Chandra, C. Avedisian, Proc. R. Soc. London, Ser. A 432, 13 (1991)

    Article  ADS  Google Scholar 

  13. M. Pasandideh-Fard, Y.M. Qiao, S. Chandra, J. Mostaghimi, Phys. Fluids 8, 650 (1996)

    Article  ADS  Google Scholar 

  14. C. Tropea, I.V. Roisman, Atomiz. Sprays 10, 387 (2000)

    Google Scholar 

  15. J. Fukai, Y. Shiba, T. Yamamoto, O. Miyatake, D. Poulikakos, M. Megaridis, Z. Zhao, Phys. Fluids 7, 236 (1995)

    Article  ADS  Google Scholar 

  16. M.R. Davidson, Chem. Eng. Sci. 55, 1159 (2000)

    Article  Google Scholar 

  17. C. Pozrikidis, J. Fluid Mech. 215, 331 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. S.I. Betelu, M.A. Fontelos, Physica D 209, 28 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. S.U. Ryu, S.Y. Lee, Int. J. Multiphase Flow 35, 1 (2009)

    Article  Google Scholar 

  20. T. Erneux, P. Mandel, SIAM J. Appl. Math. 46, 1 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. O.A. Basaran, L.E. Scriven, Phys. Fluids A 1, 799 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  22. T. Achtzehn, R. Muller, D. Duft, T. Leisner, Eur. Phys. J. D 34, 311 (2005)

    Article  ADS  Google Scholar 

  23. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena (John Wiley and Sons, New York, 2002)

  24. H.A. Stone, L.G. Leal, J. Fluid Mech. 220, 161 (1990)

    Article  ADS  MATH  Google Scholar 

  25. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cambridge, 1992)

  26. W.J. Cody, Math. Comput. 19, 105 (1965)

    MathSciNet  MATH  Google Scholar 

  27. C. Hastings, Approximations for Digital Computers (Princeton University Press, New Jersey, 1965)

  28. R.M. Thaokar, S.D. Deshmukh, Phys. Fluids 22, 034107 (2010)

    Article  ADS  Google Scholar 

  29. J. Blake, Proc. Cambridge Philos. Soc. 70, 303 (1971)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Thaokar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mhatre, S.E., Deshmukh, S.D. & Thaokar, R.M. Stability of a charged drop near a conductor wall. Eur. Phys. J. E 35, 39 (2012). https://doi.org/10.1140/epje/i2012-12039-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12039-4

Keywords

Navigation