Skip to main content
Log in

Behavior of water in contact with model hydrophobic cavities and tunnels and carbon nanotubes

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

By means of molecular dynamics simulations we analyze the behavior of water in contact with model hydrophobic cavities and tunnels. We study the hydration and filling propensity of cavities and tunnels carved in alkane monolayers and, for comparison, we also study single-walled carbon nanotubes of similar size. Our results will determine the dependence of the filling propensity as a function of cavity size while revealing the dynamical nature of the process with alternation of filled and dry states. Concerning the tunnels built across the monolayer, we shall show that the minimum diameter in order to get filled is about twice as large as that for the carbon nanotubes, thus evidencing a more hydrophobic behavior. The existence of water-water hydrogen bonds, a necessary condition for penetration, will also be made evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Huang, D. Chandler, Proc. Natl. Acad. Sci. U.S.A. 97, 8324 (2000).

    Article  ADS  Google Scholar 

  2. X. Huang, C.J. Margulis, B.J. Berne, Proc. Natl. Acad. Sci. U.S.A. 100, 11953 (2003).

    Article  ADS  Google Scholar 

  3. A. Bizzarri, S. Cannistraro, J. Phys. Chem. B 106, 6617 (2002).

    Article  Google Scholar 

  4. D. Vitkup, D. Ringe, G.A. Petsko, M. Karplus, Nat. Struct. Biol. 7, 34 (2000).

    Article  Google Scholar 

  5. N. Choudhury, B. Montgomery Pettitt, J. Phys. Chem. B 109, 6422 (2005).

    Article  Google Scholar 

  6. H.E. Stanley, P. Kumar, L. Xu, Z. Yan, M.G. Mazza, S.V. Buldyrev, S.-H. Chen, F. Mallamace, Physica A 386, 729 (2007).

    Article  ADS  Google Scholar 

  7. N. Giovambattista, P.G. Debenedetti, C.F. Lopez, P.J. Rossky, Proc. Natl. Acad. Sci. U.S.A. 105, 2274 (2008).

    Article  ADS  Google Scholar 

  8. J.C. Rasaiah, S. Garde, G. Hummer, Annu. Rev. Phys. Chem. 59, 713 (2008).

    Article  ADS  Google Scholar 

  9. J. Qvist, M. Davidovic, D. Hamelberg, B. Halle, Proc. Natl. Acad. Sci. U.S.A. 105, 6296 (2008).

    Article  ADS  Google Scholar 

  10. D.C. Malaspina, E.P. Schulz, L.M. Alarcón, M.A. Frechero, G.A. Appignanesi, Eur. Phys. J. E 032, 35 (2010).

    Article  Google Scholar 

  11. E. Schulz, M. Frechero, G. Appignanesi, Ariel Fernández, PLoS ONE 5, e12844 (2010).

    Article  Google Scholar 

  12. S. Vaitheeswaran, H. Yin, J.C. Rasaiah, G. Hummer, Proc. Natl. Acad. Sci. U.S.A. 101, 17002 (2004).

    Article  ADS  Google Scholar 

  13. G. Hummer, J.C. Rasaiah, J.P. Noworyta, Nature 414, 188 (2001).

    Article  ADS  Google Scholar 

  14. D. Takaiwa, I. Hatano, K. Koga, H. Tanaka, Proc. Natl. Acad. Sci. U.S.A. 105, 39 (2008).

    Article  ADS  Google Scholar 

  15. M. Rana, A. Chandra, J. Chem. Sci. 119, 367 (2007).

    Article  Google Scholar 

  16. A. Fernández, H.A. Scheraga, Proc. Nat. Acad. Sci. U.S.A. 100, 113 (2003).

    Article  ADS  Google Scholar 

  17. P. Ball, Nature 423, 25 (2003).

    Article  ADS  Google Scholar 

  18. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983).

    Article  ADS  Google Scholar 

  19. M.W. Mahoney, W.L. Jorgensen, J. Chem. Phys. 112, 8910 (2000).

    Article  ADS  Google Scholar 

  20. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984).

    Article  ADS  Google Scholar 

  21. D.A. Case, T.A. Darden, I.T.E. Cheatham, C.L. Simmerling, J. Wang, R.E. Duke, R. Luo, K.M. Merz, D.A. Pearlman, M. Crowley, R.C. Walker, W. Zhang, B. Wang, S. Hayik, A. Roitberg, G. Seabra, K.F. Wong, F. Paesani, X. Wu, S. Brozell, V. Tsui, H. Gohlke, L. Yang, C. Tan, J. Mongan, V. Hornak, G. Cui, P. Beroza, D.H. Mathew, C. Schafmeister, W.S. Ross, P.A. Kollman, AMBER9, University of California, San Francisco, CA (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Appignanesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, E.P., Alarcón, L.M. & Appignanesi, G.A. Behavior of water in contact with model hydrophobic cavities and tunnels and carbon nanotubes. Eur. Phys. J. E 34, 114 (2011). https://doi.org/10.1140/epje/i2011-11114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11114-8

Keywords

Navigation