Skip to main content
Log in

Self-organization in systems of treadmilling filaments

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The cytoskeleton is an important substructure of living cells, playing essential roles in cell division, cell locomotion, and the internal organization of subcellular components. Physically, the cytoskeleton is an active polar gel, that is, a system of polar filamentous polymers, which is intrinsically out of thermodynamic equilibrium. Active processes are notably involved in filament growth and can lead to net filament assembly at one end and disassembly at the other, a phenomenon called treadmilling. Here, we develop a framework for describing collective effects in systems of treadmilling filaments in the presence of agents regulating filament assembly. We find that such systems can self-organize into asters and moving filament blobs. We discuss possible implications of our findings for subcellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bray, Cell movements: From Molecules to Motility, 2nd edition (Garland, New York, 2001)

  2. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Inc., Sunderland, 2001)

  3. T.D. Pollard, G.G. Borisy, Cell 112, 453 (2003)

    Article  Google Scholar 

  4. V.I. Rodionov, G.G. Borisy, Nature 386, 170 (1997)

    Article  ADS  Google Scholar 

  5. V.I. Rodionov, G.G. Borisy, Science 275, 215 (1997)

    Article  Google Scholar 

  6. M.J. Tyska, M.S. Mooseker, Biophys. J. 82, 1869 (2002)

    Article  ADS  Google Scholar 

  7. M.E. Schneider, I.A. Belyantseva, R.B. Azevedo, B. Kachar, Nature 418, 837 (2002)

    Article  ADS  Google Scholar 

  8. F. Jülicher, K. Kruse, J. Prost, J.-F. Joanny, Phys. Rep. 449, 3 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  9. D. Humphrey, C. Duggan, D. Saha, D. Smith, J. Käs, Nature 416, 413 (2002)

    Article  ADS  Google Scholar 

  10. F.J. N\'e, Nature 389, 305 (1997)

    Article  ADS  Google Scholar 

  11. T. Surrey, F. N\'e, Science 292, 1167 (2001)

    Article  ADS  Google Scholar 

  12. F. Backouche, L. Haviv, D. Groswasser, A. Bernheim-Groswasser, Phys. Biol. 3, 264 (2006)

    Article  ADS  Google Scholar 

  13. J. Plastino, C. Sykes, Curr. Opin. Cell Biol. 17, 62 (2005)

    Article  Google Scholar 

  14. D. Mizuno, C. Tardin, C.F. Schmidt, F.C. MacKintosh, Science 315, 370 (2007)

    Article  ADS  Google Scholar 

  15. H.Y. Lee, M. Kardar, Phys. Rev. E 64, 056113 (2001)

    Article  ADS  Google Scholar 

  16. K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Phys. Rev. Lett. 92, 078101 (2004)

    Article  ADS  Google Scholar 

  17. A. Zumdieck, M. Cosentino Lagomarsino, C. Tanase, K. Kruse, B. Mulder, M. Dogterom, F. Jülicher, Phys. Rev. Lett. 95, 258103 (2005)

    Article  ADS  Google Scholar 

  18. J. Toner, Y. Tu, Phys. Rev. Lett. 75, 4326 (1995)

    Article  ADS  Google Scholar 

  19. R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002)

    Article  ADS  Google Scholar 

  20. K. Sekimoto, H. Nakazawa, in Current Topics in Physics, edited by Y.M. Choe, J.B. Hong, C.N. Chang (World scientific, Singapore, 1998), p. 394, physics/0004044

  21. K. Kruse, F. Jülicher, Phys. Rev. Lett. 85, 1778 (2000)

    Article  ADS  Google Scholar 

  22. T.B. Liverpool, M.C. Marchetti, Phys. Rev. Lett. 90, 138102 (2003)

    Article  ADS  Google Scholar 

  23. I.S. Aranson, L.S. Tsimring, Phys. Rev. E 71, 050901 (2005)

    Article  ADS  Google Scholar 

  24. V. Malikov, A. Kashina, V. Rodionov, Mol. Biol. Cell 15, 2742 (2004)

    Article  Google Scholar 

  25. I.V. Maly, G.G. Borisy, Trends Cell Biol. 12, 462 (2002)

    Article  Google Scholar 

  26. E.N. Cytrynbaum, V. Rodionov, A. Mogilner, J. Cell Sci. 117, 1381 (2004)

    Article  Google Scholar 

  27. K. Doubrovinski, K. Kruse, Phys. Rev. Lett. 99, 228104 (2007)

    Article  ADS  Google Scholar 

  28. F. Oosawa, S. Asakura, Thermodynamics of the Polymerization of Protein (Academic Press, New York, 1975)

  29. M. Dogterom, S. Leibler, Phys. Rev. Lett. 70, 1347 (1993)

    Article  ADS  Google Scholar 

  30. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications Inc., 1965)

  31. K. Doubrovinski, K. Kruse, EPL 83, 18003 (2008)

    Article  ADS  Google Scholar 

  32. K. Doubrovinski, dissertation, Saarland University (2008)

  33. I. Vorobjev, V. Malikov, V. Rodionov, Proc. Natl. Acad. Sci. U.S.A. 98, 10160 (2001)

    Article  ADS  Google Scholar 

  34. S. Ramaswamy, J. Toner, J. Prost, Phys. Rev. Lett. 84, 3494 (2000)

    Article  ADS  Google Scholar 

  35. K. Kruse, S. Camalet, F. Jülicher, Phys. Rev. Lett. 87, 138101 (2001)

    Article  ADS  Google Scholar 

  36. R. Shlomovitz, N.S. Gov, Phys. Rev. Lett. 98, 168103 (2007)

    Article  ADS  Google Scholar 

  37. J. Prost, C. Barbetta, J.-F. Joanny, Biophys. J. 93, 1124 (2007)

    Article  ADS  Google Scholar 

  38. F. Chamaraux, S. Fache, F. Bruckert, B. Fourcade, Phys. Rev. Lett. 94, 158102 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kruse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doubrovinski, K., Kruse, K. Self-organization in systems of treadmilling filaments. Eur. Phys. J. E 31, 95–104 (2010). https://doi.org/10.1140/epje/i2010-10548-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10548-8

Keywords

Navigation