Skip to main content
Log in

Dewetting of polymer films by ion implantation

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We report dewetting of thermodynamically stable, thick (∼ 100 nm) polystyrene films by titanium ion implantation. The dynamic dewetting patterns in time evolution are recorded. The dewetting mechanism is determined to be heterogeneous nucleation, where the defects and Ti nanoparticles formed by ion implantation serve as the nuclei. In addition, we observe abundant rims with regular polygonal shapes in dewetting patterns. This is attributed to fingering instability, which results from the balance between the driving force arisen from thermally induced surface tension gradient and the resistive forces from the combination of friction force, Laplace pressure and long-range van der Waals interactions. Finally, a model based on mass conservation is used to qualitatively describe the transition from circular to polygonal shaped rims at a critical diameter for holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Reiter, Phys. Rev. Lett. 68, 75 (1992).

    Google Scholar 

  2. G. Reiter, Langmuir 9, 1344 (1993).

  3. R. Seemann, S. Herminghaus, K. Jacobs, Phys. Rev. Lett. 86, 5534 (2001).

    Google Scholar 

  4. R. Xing, C. Luo, Z. Wang, Y. Han, Polymer 48, 3574 (2007).

    Google Scholar 

  5. P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).

    Google Scholar 

  6. K.A. Barnes, J.F. Douglas, D.W. Liu, A. Karim, Adv. Colloid Interface Sci. 94, 83 (2001).

    Google Scholar 

  7. G. Reiter, R. Khanna, A. Sharma, Phys. Rev. Lett. 85, 1432 (2000).

    Google Scholar 

  8. Y. Cai, B.-m.Z. Newby, Langmuir 24, 5202 (2008).

  9. A.M. Higgins, R.A.L. Jones, Nature 404, 476 (2000).

  10. C. Neto, Phys. Chem. Chem. Phys. 9, 149 (2007).

    Google Scholar 

  11. Z. Nie, E. Kumacheva, Nat. Mater. 7, 277 (2008).

    Google Scholar 

  12. J.Z. Wang, Z.H. Zheng, H.W. Li, W.T.S. Huck, H. Sirringhaus, Syn. Met. 146, 287 (2004).

    Google Scholar 

  13. B. Yoon, H. Acharya, G. Lee, H.-C. Kim, J. Huh, C. Park, Soft Matter 4, 1467 (2008).

    Google Scholar 

  14. T. Vilmin, E. Raphael, Eur. Phys. J. E 21, 161 (2006).

    Google Scholar 

  15. K. Jacobs, S. Herminghaus, K.R. Mecke, Langmuir 14, 965 (1998).

  16. T.G. Stange, D.F. Evans, W.A. Hendrickson, Langmuir 13, 4459 (1997).

  17. C. Bollinne, S. Cuenot, B. Nysten, A.M. Jonas, Eur. Phys. J. E 12, 389 (2003).

    Google Scholar 

  18. K.D.F. Wensink, B. Jerome, Langmuir 18, 413 (2002).

  19. X. Hu, D.G. Cahill, R.S. Averback, Appl. Phys. Lett. 76, 3215 (2000).

    Google Scholar 

  20. J. Lian, L. Wang, X. Sun, Q. Yu, R.C. Ewing, Nano Lett. 6, 1047 (2006).

  21. X. Shi, B.K. Tay, S.P. Lau, Int. J. Mod. Phys. B 14, 136 (2000).

    Google Scholar 

  22. B.K. Tay, Z.W. Zhao, D.H.C. Chua, Mater. Sci. Eng. R 52, 1 (2006).

    Google Scholar 

  23. R. Xie, A. Karim, J.F. Douglas, C.C. Han, R.A. Weiss, Phys. Rev. Lett. 81, 1251 (1998).

    Google Scholar 

  24. S. Al Akhrass, G. Reiter, S.Y. Hou, M.H. Yang, Y.L. Chang, F.C. Chang, C.F. Wang, A.C.-M. Yang, Phys. Rev. Lett. 100, 178301 (2008).

    Google Scholar 

  25. J.P. de Silva, M. Geoghegan, A.M. Higgins, G. Krausch, M.-O. David, G. Reiter, Phys. Rev. Lett. 98, 267802 (2007).

    Google Scholar 

  26. S. Gabriele, S. Sclavons, G. Reiter, P. Damman, Phys. Rev. Lett. 96, 156105 (2006).

    Google Scholar 

  27. K. Akimoto, F. Sato, T. Morikawa, M. Fujihira, Jpn. J. Appl. Phys. 43, 4492 (2004).

    Google Scholar 

  28. G. Reiter, A. Sharma, R. Khanna, A. Casoli, M.-O. David, J. Colloid Interface Sci. 214, 126 (1999).

    Google Scholar 

  29. A.L. Stepanov, Optical Extinction of Metal Nanoparticles Synthesized in Polymer by Ion Implantation (John Wiley & Sons, NJ, 2005).

  30. A.L. Stepanov, S.N. Abdullin, V.Y. Petukhov, Y.N. Osin, R.I. Khaibullin, I.B. Khaibullin, Philos. Mag. B 80, 23 (2000).

    Google Scholar 

  31. B.M. Besancon, P.F. Green, Phys. Rev. E 70, 051808 (2004).

    Google Scholar 

  32. S.-H. Choi, B.-m.Z. Newby, J. Chem. Phys. 124, 054702 (2006).

    Google Scholar 

  33. E. Pauliac-Vaujour, A. Stannard, C.P. Martin, M.O. Blunt, I. Notingher, P.J. Moriarty, Phys. Rev. Lett. 100, 176102 (2008).

    Google Scholar 

  34. A.M. Cazabat, F. Heslot, S.M. Troian, P. Carles, Nature 346, 824 (1990).

  35. F. Melo, J.F. Joanny, S. Fauve, Phys. Rev. Lett. 63, 1958 (1989).

  36. S.M. Troian, E. Herbolzheimer, S.A. Safran, J.F. Joanny, Europhys. Lett. 10, 25 (1989).

    Google Scholar 

  37. F. Brochard-Wyart, G. Debregeas, R. Fondecave, P. Martin, Macromolecules 30, 1211 (1997).

  38. E.H. Lee, Nucl. Instrum. Methods Phys. Res. B 151, 29 (1999).

    Google Scholar 

  39. G. Reiter, Phys. Rev. Lett. 87, 186101 (2001).

    Google Scholar 

  40. G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphael, Nat. Mater. 4, 754 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Z.J., Tay, B.K. Dewetting of polymer films by ion implantation. Eur. Phys. J. E 28, 273–278 (2009). https://doi.org/10.1140/epje/i2008-10430-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10430-4

PACS

Navigation