Skip to main content
Log in

Complete wetting of pits and grooves

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

For one-component volatile fluids governed by dispersion forces an effective interface Hamiltonian, derived from a microscopic density functional theory, is used to study complete wetting of geometrically structured substrates. Also the long range of substrate potentials is explicitly taken into account. Four types of geometrical patterns are considered: i) one-dimensional periodic arrays of rectangular or parabolic grooves and ii) two-dimensional lattices of cylindrical or parabolic pits. We present numerical evidence that at the centers of the cavity regions the thicknesses of the adsorbed films obey precisely the same geometrical covariance relation, which has been recently reported for complete cone and wedge filling. However, this covariance does not hold for the laterally averaged wetting film thicknesses. For sufficiently deep cavities with vertical walls and close to liquid-gas phase coexistence in the bulk, the film thicknesses exhibit an effective planar scaling regime, which as a function of undersaturation is characterized by a power law with the common critical exponent -1/3 as for a flat substrate, but with the amplitude depending on the geometrical features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Gang, K.J. Alvine, M. Fukuto, P.S. Pershan, C.T. Black, B.M. Ocko, Phys. Rev. Lett. 95, 217801 (2005).

    Article  ADS  Google Scholar 

  2. L. Bruschi, A. Carlin, G. Mistura, Phys. Rev. Lett. 89, 166101 (2002).

    Article  ADS  Google Scholar 

  3. L. Bruschi, G. Fois, G. Mistura, M. Tormen, V. Garbin, E. di Fabrizio, A. Gerardino, M. Natali, J. Chem. Phys. 125, 144709 (2006).

    Article  ADS  Google Scholar 

  4. K. Rejmer, S. Dietrich, M. Napiórkowski, Phys. Rev. E 60, 4027 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  5. C. Rascón, A.O. Parry, Nature 407, 986 (2000).

    Article  ADS  Google Scholar 

  6. C. Rascón, A.O. Parry, J. Chem. Phys. 112, 5157 (2000).

    Article  Google Scholar 

  7. C. Rascón, A.O. Parry, Phys. Rev. Lett. 94, 096103 (2005).

    Article  ADS  Google Scholar 

  8. M. Tasinkevych, S. Dietrich, Phys. Rev. Lett. 97, 106102 (2006).

    Article  ADS  Google Scholar 

  9. S. Dietrich, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz, Vol. 12 (Academic, London, 1988) p. 1.

  10. S. Dietrich, M. Napiórkowski, Phys. Rev. A 43, 1861 (1991).

    Article  ADS  Google Scholar 

  11. G.A. Darbellay, J.M. Yeomans, J. Phys. A: Math. Gen. 25, 4275 (1992).

    Article  ADS  Google Scholar 

  12. M.O. Robbins, D. Andelman, J.F. Joanny, Phys. Rev. A 43, 4344 (1991).

    Article  ADS  Google Scholar 

  13. M. Napiórkowski, W. Koch, S. Dietrich, Phys. Rev. A 45, 5760 (1992).

    Article  ADS  Google Scholar 

  14. W. Koch, S. Dietrich, M. Napiórkowski, Phys. Rev. E 51, 3300 (1995).

    Article  ADS  Google Scholar 

  15. C. Bauer, S. Dietrich, Phys. Rev. E 60, 6919 (1999)

    Article  ADS  Google Scholar 

  16. R. Evans, Adv. Phys. 28, 143 (1979).

    Article  ADS  Google Scholar 

  17. J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971).

    Article  ADS  Google Scholar 

  18. S. Dietrich, M. Napiórkowski, Physica A 177, 437 (1991)

    Article  ADS  Google Scholar 

  19. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969).

    Article  ADS  Google Scholar 

  20. T. Getta, S. Dietrich, Phys. Rev. E 57, 655 (1998).

    Article  ADS  Google Scholar 

  21. M. Napiórkowski, S. Dietrich, Phys. Rev. B 34, 6469 (1986).

    Article  ADS  Google Scholar 

  22. C. Bauer, S. Dietrich, Eur. Phys. J. B 10, 767 (1999).

    Article  ADS  Google Scholar 

  23. K.R. Mecke, S. Dietrich, Phys. Rev. E 59, 6766 (1999).

    Article  ADS  Google Scholar 

  24. A.O. Parry, C. Rascón, N.B. Wilding, R. Evans, Phys. Rev. Lett. 98, 226101 (2007).

    Article  ADS  Google Scholar 

  25. S. Goldman, J. Phys. Chem. 80, 1697 (1976).

    Article  Google Scholar 

  26. B. Derjaguin, Acta. Physicochim. URSS 12, 181 (1940).

    Google Scholar 

  27. J.J. Jasper, J. Phys. Chem. Ref. Data 1, 841 (1972).

    Article  ADS  Google Scholar 

  28. O. Gang, P.S. Pershan, B.M. Ocko, private communication

  29. C. Rascón, arXiv:0704:2150.

  30. K. Fukuzawa, J. Kawamura, T. Deguchi, H. Zhang, Y. Mitsuya, J. Chem. Phys. 121, 4358 (2004).

    Article  ADS  Google Scholar 

  31. L. Harnau, F. Penna, S. Dietrich, Phys. Rev. E 70, 021505 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tasinkevych.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tasinkevych, M., Dietrich, S. Complete wetting of pits and grooves. Eur. Phys. J. E 23, 117–128 (2007). https://doi.org/10.1140/epje/i2007-10184-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10184-5

PACS.

Navigation