Skip to main content
Log in

An elastic, plastic, viscous model for slow shear of a liquid foam

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We suggest a scalar model for deformation and flow of an amorphous material such as a foam or an emulsion. To describe elastic, plastic and viscous behaviours, we use three scalar variables: elastic deformation, plastic deformation rate and total deformation rate; and three material-specific parameters: shear modulus, yield deformation and viscosity. We obtain equations valid for different types of deformations and flows slower than the relaxation rate towards mechanical equilibrium. In particular, they are valid both in transient or steady flow regimes, even at large elastic deformation. We discuss why viscosity can be relevant even in this slow shear (often called “quasi-static”) limit. Predictions of the storage and loss moduli agree with the experimental literature, and explain with simple arguments the non-linear large amplitude trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Landau, E.M. Lifchitz, Theory of Elasticity (Reed, 1986).

  2. J. Chakrabarty, Theory of Plasticity (McGraw-Hill Book Company, New York, 1978).

  3. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 2000).

  4. C.W. Macosko, Rheology: Principles, Measurements and Applications (Wiley-VCH, 1994).

  5. D. François, A. Pineau, A. Zaoui, Comportement mécanique des matériaux: viscosité, endommagement, mécanique de la rupture, mécanique du contact (Hermès, 1993).

  6. D. François, A. Pineau, A. Zaoui, Comportement mécanique des matériaux: élasticité et plasticité (Hermès, 1995).-1

  7. A.M. Kraynik, Annu. Rev. Fluid Mech. 20, 325 (1988).

    Article  ADS  Google Scholar 

  8. D. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, Oxford, 1999).

  9. R. Höhler, S. Cohen-Addad, J. Phys.: Condens. Matter 17, R1041 (2005).

  10. R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, 1999).

  11. T.G. Mason, J. Bibette, D.A. Weitz, J. Colloid Interface Sci. 179, 439 (1996).

    Article  Google Scholar 

  12. P. Sollich, F. Lequeux, P. Hebraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997).

    Article  ADS  Google Scholar 

  13. M.L. Falk, J.S. Langer, Phys. Rev. E 57, 7192 (1998).

    Article  ADS  Google Scholar 

  14. A. Kabla, G. Debrégeas, Phys. Rev. Lett. 90, 258303 (2003).

    Article  ADS  Google Scholar 

  15. G. Picard, A. Ajdari, F. Lequeux, L. Bocquet, Phys. Rev. E 71, 010501 (2005).

    Article  ADS  Google Scholar 

  16. P. Coussot, Phys. Rev. Lett. 95, 078303 (2005).

    Article  ADS  Google Scholar 

  17. P. Marmottant, B. Dollet, C. Raufaste, F. Graner, cond-mat/0609188.

  18. E. Janiaud, D. Weaire, S. Hutzler, Phys. Rev. Lett. 97, 038302 (2006).

    Article  ADS  Google Scholar 

  19. K. Miyazaki, H.M. Wyss, D.A. Weitz, D.R. Reichman, Europhys. Lett. 75, 915 (2006).

    Article  ADS  Google Scholar 

  20. H.M. Wyss, K. Miyazaki, J. Mattsson, Z. Hu, D.R. Reichman, D.A. Weitz, Phys. Rev. Lett. 98, 238303 (2007).

    Article  ADS  Google Scholar 

  21. V. Labiausse, PhD Thesis, Université de Marne-la-Vallée (2004).

  22. R. Höhler, S. Cohen-Addad, V. Labiausse, cond-mat/0610279.

  23. P. Saramito, J. Non-Newtonian Fluid Mech. 145, 1 (2007).

    Article  Google Scholar 

  24. G. Porte, J.-F. Berret, J. Harden, J. Phys. II 7, 459 (1997).

    Article  Google Scholar 

  25. M. Aubouy, Y. Jiang, J.A. Glazier, F. Graner, Granular Matter 5, 67 (2003).

    Article  MATH  Google Scholar 

  26. M. Asipauskas, M. Aubouy, J.A. Glazier, F. Graner, Y. Jiang, Granular Matter 5, 71 (2003).

    Article  MATH  Google Scholar 

  27. N. Cristescu, I. Siliciu, Viscoplasticity (Martinus Nijhoff, 1982).

  28. A.K. Miller, Unified Constitutive Equations for Creep and Plasticity (Elsevier Applied Science, 1987).

  29. J. Lauridsen, M. Twardos, M. Dennin, Phys. Rev. Lett. 89, 098303 (2002).

    Article  ADS  Google Scholar 

  30. A.D. Gopal, D.J. Durian, Phys. Rev. Lett. 91, 188303 (2003).

    Article  ADS  Google Scholar 

  31. H.M. Princen, J. Colloid Interface Sci. 91, 160 (1983).

    Article  Google Scholar 

  32. A.M. Kraynik, M.G. Hansen, J. Rheol. 31, 175 (1987).

    Article  ADS  Google Scholar 

  33. E. Janiaud, D. Weaire, S. Hutzler, Phys. Rev. Lett. 93, 18303 (2006).

    Google Scholar 

  34. G. Debrégeas, H. Tabuteau, J.-M. di Meglio, Phys. Rev. Lett. 87, 178305 (2001).

    Article  ADS  Google Scholar 

  35. G. Puglisi, L. Truskinovsky, J. Mech. Phys. Solids 53, 655 (2005).

    Article  MATH  Google Scholar 

  36. C.A. Coulomb, Mémoires de l'Académie des Sciences (Paris) (1779).

  37. T. Baumberger, P. Berthoud, C. Caroli, Phys. Rev. B 60, 3928 (1999).

    Article  ADS  Google Scholar 

  38. F. Rouyer, S. Cohen-Addad, R. Höhler, Colloid Surf. A 263, 111 (2005).

    Article  Google Scholar 

  39. M. Aubertin, M.R. Julien, S. Servant, D.E. Gill, Can. Geotech. J. 36, 660 (1999).

    Article  Google Scholar 

  40. S. Courty, B. Dollet, K. Kassner, A. Renault, F. Graner, Eur. Phys. J. E 11, 5359 (2003).

    Article  Google Scholar 

  41. K. Hyun, S.H. Kim, K.H. Ahn, S.J. Lee, J. Non-Newtonian Fluid Mech. 107, 51 (2002).

    Article  MATH  Google Scholar 

  42. H.G. Sim, K.H. Ahn, S.J. Lee, J. Non-Newtonian Fluid Mech. 112, 237 (2003).

    Article  MATH  ADS  Google Scholar 

  43. T.G. Mason, J. Bibette, D.A. Weitz, Phys. Rev. Lett. 75, 10 (1995).

    Google Scholar 

  44. A. Saint-Jalmes, D. Durian, J. Rheol. 43, 6 (1999).

    Article  Google Scholar 

  45. F. Da Cruz, F. Chevoir, D. Bonn, P. Coussot, Phys. Rev. E 66, 051305 (2002).

    Article  ADS  Google Scholar 

  46. P. Coussot, J.S. Raynaud, F. Bertrand, P. Moucheront, J.P. Guilbaud, H.T. Huynh, S. Jarny, D. Lesueur, Phys. Rev. Lett. 88, 218301 (2002).

    Article  ADS  Google Scholar 

  47. S. Marze, PhD Thesis, Université Paris Sud (2006).

  48. J.C. Simo, T.J.R. Hughes, Computational Inelasticity (Springer, 1998).

  49. F. Elias, C. Flament, J.A. Glazier, F. Graner, Y. Jiang, Philos. Mag. B 79, 729 (1999).

    Article  ADS  Google Scholar 

  50. P. Jop, Y. Forterre, O. Pouliquen, Nature 441, 727 (2006).

    Article  ADS  Google Scholar 

  51. C. Raufaste, in preparation.

  52. B. Dollet, F. Graner, J. Fluid Mech. 585, 181 (2007).

    Article  Google Scholar 

  53. L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D.E. Masri, D. L'Hote, F. Ladieu, M. Pierno, Science 310, 1797 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Graner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmottant, P., Graner, F. An elastic, plastic, viscous model for slow shear of a liquid foam. Eur. Phys. J. E 23, 337–347 (2007). https://doi.org/10.1140/epje/i2006-10193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2006-10193-x

PACS.

Navigation