Skip to main content
Log in

Shrinking of anionic polyacrylate coils induced by Ca2+, Sr2+ and Ba2+: A combined light scattering and ASAXS study

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Anionic polyacrylate chains (NaPA) form precipitates if alkaline earth cations are added in stoichiometric amounts. Accordingly, precipitation thresholds were established for three different alkaline earth cations Ca2+, Sr2+ and Ba2+. Close to the precipitation threshold, the NaPA chains significantly decrease in size. This shrinking process was followed by means of combined static and dynamic light scattering. Intermediates were generated by varying the ratio [MCl2]/[NaPA] with M denoting the respective alkaline earth cation. All experiments were performed at an inert salt level of 0.01M NaCl. Similar coil-to-sphere transitions could be observed with all three alkaline earth cations Ca2+, Sr2+ and Ba2+. Based on these findings, supplementary conventional and anomalous small-angle X-ray scattering experiments using selected intermediates close to the precipitation threshold of SrPA were performed. The distribution of Sr counterions around the polyacrylate chains in aqueous solution provided the desired scattering contrast. Energy-dependent scattering experiments enabled successful separation of the pure-resonant terms, which solely stem from the counterions. The Sr2+ scattering roughly reflects the monomer distribution of the polyacrylate chains. Different ratios of the concentrations of [ SrCl2]/[NaPA] revealed dramatic changes in the scattering curves. The scattering curve at the lowest ratio indicated an almost coil-like behaviour, while at the higher ratios the scattering curves supported the model of highly contracted polymer chains. Most of X-ray scattering experiments on intermediate states revealed compact structural elements which were significantly smaller than the respective overall size of the NaPA particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Flory, J.E. Osterheld, J. Phys. Chem. 58, 653 (1954).

    Article  Google Scholar 

  2. P. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953).

  3. A. Takahashi, S. Yamori, I. Kagawa, Kogyo Kagaku Zasshi 83, 11 (1962).

    Google Scholar 

  4. A. Takahashi, M. Nagasawa, J. Am. Chem. Soc. 86, 543 (1964).

    Article  Google Scholar 

  5. R. Schweins, J. Hollmann, K. Huber, Polymer 44, 7131 (2003).

    Article  Google Scholar 

  6. C.G. Sinn, R. Dimova, M. Antonietti, Macromoelcules 37, 3444 (2004).

    Article  Google Scholar 

  7. F. Molnar, J. Rieger, Langmuir 21, 786 (2005).

    Article  Google Scholar 

  8. A. Ikegami, N. Imai, J. Polym. Sci. 56, 133 (1962).

    Article  Google Scholar 

  9. I.J. Michaeli, Polym. Sci. 48, 291 (1960).

    Article  Google Scholar 

  10. I. Pochard, A. Foissy, P. Couchot, Colloid Polym. Sci. 277, 818 (1999).

    Article  Google Scholar 

  11. I. Sabbagh, M. Delsanti, P. Lesieur, Eur. Phys. J. B 12, 253 (1999).

    Article  ADS  Google Scholar 

  12. K. Huber, J. Phys. Chem. 97, 9825 (1993).

    Article  Google Scholar 

  13. R. Schweins, K. Huber, Eur. Phys. J. E 5, 117 (2001).

    Article  Google Scholar 

  14. R. Schweins, P. Lindner, K. Huber, Macromolecules 36, 9564 (2003).

    Article  Google Scholar 

  15. H.J. Limbach, Ch. Holm, J. Phys. Chem. B 107, 8041 (2003).

    Article  Google Scholar 

  16. R. Schweins, K. Huber, Macromol. Symp. 211, 25 (2004).

    Article  Google Scholar 

  17. M.-J. Lee, M.M. Green, F. Mikes, H. Morawetz, Macromolecules 35, 4216 (2002).

    Article  Google Scholar 

  18. D. Baigl, M. Sferrazza, C.E. Williams, Europhys. Lett. 62, 110 (2003).

    Article  ADS  Google Scholar 

  19. W. Essafi, F. Lafuma, C.E. Williams, J. Phys. II 5, 1269 (1995).

    Article  Google Scholar 

  20. D. Baigl, D. Ober, A. Qu, A. Fery, C.E. Williams, Europhys. Lett. 62, 588 (2003).

    Article  ADS  Google Scholar 

  21. C. Heitz, M. Rawiso, J. Francois, Polymer 40, 1637 (1999).

    Article  Google Scholar 

  22. C. Heitz, J. Francois, Polymer 40, 3331 (1999).

    Article  Google Scholar 

  23. G. Goerigk, R. Schweins, K. Huber, M. Ballauf, Europhys. Lett. 66, 331 (2004).

    Article  ADS  Google Scholar 

  24. V.O. Aseyev, S.I. Klenin, H. Tenhu, I. Grillo, E. Geissler, Macromolecules 34, 3706 (2001).

    Article  Google Scholar 

  25. E. Dubois, F. Boué, Macromolecules 34, 3684 (2001).

    Article  Google Scholar 

  26. J. Combet, F. Isel, F. Rawiso, Macromolecules 38, 7456 (2005).

    Article  Google Scholar 

  27. S. Minko, A. Kiriy, G. Gorodyska, M. Stamm, J. Am. Chem. Soc. 124, 10192 (2002).

    Article  Google Scholar 

  28. Y. Kantor, M. Kardar, Europhys. Lett. 27, 643 (1994).

    MathSciNet  ADS  Google Scholar 

  29. A.V. Dobrynin, M. Rubinstein, S.P. Obukhov, Macromolecules 29, 2974 (1996).

    Article  Google Scholar 

  30. H. Schiessel, Macromolecules 32, 5673 (1999).

    Article  Google Scholar 

  31. S. Uyaver, Ch. Seidel, J. Phys. Chem. B 198, 18804 (2004).

    Article  Google Scholar 

  32. H.B. Stuhrmann, Adv. Polym. Sci. 67, 123 (1985).

    Article  Google Scholar 

  33. Q. de Robilliard, X. Guo, N. Dingenouts, M. Ballauff, G. Goerigk, Macromol. Symp. 164, 81 (2001).

    Article  Google Scholar 

  34. B. Guilleaume, M. Ballauff, G. Goerigk, M. Wittemann, M. Rehahn, Colloid Polym. Sci. 279, 829 (2001).

    Article  Google Scholar 

  35. B. Guilleaume, J. Blaul, M. Ballauff, M. Wittemann, M. Rehahn, G. Goerigk, Eur. Phys. J. E 8, 299 (2002).

    Article  Google Scholar 

  36. M. Patel, S. Rosenfeldt, M. Ballauff, N. Dingenouts, D. Pontoni, T. Narayanan, Phys. Chem. Chem. Phys. 6, 2962 (2004).

    Article  Google Scholar 

  37. N. Dingenouts, M. Patel, S. Rosenfeldt, D. Pontoni, M. Ballauff, T. Narayanan, Macromolecules 37, 8152 (2004).

    Article  Google Scholar 

  38. J. Bolze, M. Ballauff, T. Rische, D. Rudhardt, J. Meixner, Macromol. Chem. Phys. 205, 165 (2004).

    Article  Google Scholar 

  39. D.E. Koppel, J. Phys. Chem. 57, 4814 (1972).

    Article  Google Scholar 

  40. S.W. Provencher, Comput. Phys. Commun. 27, 213

  41. H.-G. Haubold, K. Gruenhagen, M. Wagener, H. Jungbluth, H. Heer, A. Pfeil, H. Rongen, G. Brandenburg, R. Moeller, J. Matzerath, P. Hiller, H. Halling, Rev. Sci. Instrum. 60, 1943 (1989).

    Article  ADS  Google Scholar 

  42. D.T. Cromer, D. Liberman, J. Chem. Phys. 53, 1891 (1970).

    Article  ADS  Google Scholar 

  43. D.T. Cromer, D. Liberman, Acta Crystallogr. Sect. A 37, 267 (1981).

    Article  ADS  Google Scholar 

  44. G. Goerigk, D.L. Williamson, J. Appl. Phys. 99, 084309 (2006).

    Article  ADS  Google Scholar 

  45. O. Glatter, O. Kratky (Editors), Small Angle X-ray Scattering (Academic Press, London, 1982).

  46. W. Burchard, Adv. Polym. Sci. 48, 1 (1983).

    Google Scholar 

  47. J.S. Vrentas, H.T. Liu, J.C. Duda, J. Polym. Sci., Polym. Phys. Ed. 18, 633 (1980).

    Article  Google Scholar 

  48. M. Schmidt, W. Burchard, Macromolecules 14, 210 (1981).

    Article  Google Scholar 

  49. K. Huber, W. Burchard, A.Z. Akcasu, Macromolecules 18, 2743 (1985).

    Article  MathSciNet  Google Scholar 

  50. C. Wu, S. Zhou, Macromolecules 28, 5388

  51. W. Burchard, M. Schmidt, W.H. Stockmayer, Macromolecules 13, 580

  52. W. Burchard, M. Frank, E. Michel, Ber. Bunsenges. Phys. Chem. 100, 807 (1996).

    Google Scholar 

  53. G. Porod, Kolloid Z. 124, 83 (1951).

    Article  Google Scholar 

  54. Lord Rayleigh, Proc. R. Soc. London, Ser. A 90, 219 (1914).

    Google Scholar 

  55. B. Zimm, J. Chem. Phys. 16, 1099 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Huber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweins, R., Goerigk, G. & Huber, K. Shrinking of anionic polyacrylate coils induced by Ca2+, Sr2+ and Ba2+: A combined light scattering and ASAXS study. Eur. Phys. J. E 21, 99–110 (2006). https://doi.org/10.1140/epje/i2006-10047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2006-10047-7

PACS.

Navigation