Skip to main content
Log in

Surface-functionalized nanoparticles with liquid-like behavior: The role of the constituent components

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Ionically modified silica nanoparticles with large counter anions (sulfonate, isostearate) at two silica volume fractions (13 and 27%) form a viscous fluid and a glass but not crystalline solids. Dielectric spectroscopy, Brillouin scattering and shear rheometry were employed to investigate these new nanoparticle-based fluids. The glass transition temperature and hence the local dynamics are governed by the large counter anions, whereas the flow properties can be controlled by the spatial correlation between the nanoparticles, e.g. by tuning the volume fraction of hard cores and local interactions between segments in the soft corona. Liquid-like ordering of the cores was revealed by X-ray scattering and found to influence significantly the macroscopic flow properties of these salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.B. Bourlinos, R.A. Herrera, N. Chalkias, D.D. Jiang, Q. Zhang, L.A. Archer, E.P. Giannelis, Adv. Mater. 17, 234 (2005).

    Article  Google Scholar 

  2. A.B. Bourlinos, S. Ray Chowdhury, R. Herrera, D.D. Jiang, Q. Zhang, L.A. Archer, E.P. Giannelis, Adv. Funct. Mater. 15, 1285 (2005).

    Article  Google Scholar 

  3. B. Smarsly, H. Kaper, Angew. Chem., Int. Ed. 44, 3809 (2005).

    Google Scholar 

  4. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78, 718 (2001).

    Article  ADS  Google Scholar 

  5. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Appl. Phys. Lett. 79, 2252 (2001).

    Article  ADS  Google Scholar 

  6. S.P. Jang, S.U.S. Choi, Appl. Phys. Lett. 84, 4316 (2004).

    Article  ADS  Google Scholar 

  7. R. Prasher, Phys. Rev. Lett. 94, 025901 (2005).

    Article  ADS  Google Scholar 

  8. X. Wang, X. Xu, S.U.S. Choi, J. Thermophys. Heat Transf. 13, 474 (1999).

    Article  Google Scholar 

  9. O.M. Wilson, X. Hu, D.G. Cahill, P.V. Braun, Phys. Rev. B. 66, 224301 (2002).

    Article  ADS  Google Scholar 

  10. S. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, P. Keblinski, Nature Mater. 2, 731 (2003).

    Article  ADS  Google Scholar 

  11. D.T. Wasan, A.D. Nikolov, Nature 423, 156 (2003).

    Article  ADS  Google Scholar 

  12. Z.S. Hu, J.X. Dong, Wear 216, 92 (1998).

    Article  Google Scholar 

  13. M. Antonietti, D. Kuang, B. Smarsly, Y. Zhou, Angew. Chem., Int. Ed. 43, 4988 (2004).

    Google Scholar 

  14. T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, Science 300, 2072 (2003).

    Article  ADS  Google Scholar 

  15. X. Mu, J. Meng, Z.-C. Li, Y. Kou, J. Am. Chem. Soc. 127, 9694 (2005).

    Article  Google Scholar 

  16. B.P. Binks, A.K. Dyab, P.D. Fletcher, Chem. Commun. 20, 2540 (2003).

    Article  Google Scholar 

  17. Q. Zhang, L.A. Archer, Macromolecules 37, 1928 (2004).

    Article  Google Scholar 

  18. B.-H. Hang, M.A. Winnik, A.B. Bourlinos, E.P. Giannelis, Chem. Mater. 17, 4001 (2005).

    Article  Google Scholar 

  19. R.S. Penciu, H. Kriegs, G. Petekidis, G. Fytas, E.N. Economou, J. Chem. Phys. 118, 5224 (2003)

    Article  ADS  Google Scholar 

  20. A. Schoenhals, F. Kremer, in Broadband Dielectric Spectroscopy, edited by F. Kremer, A. Schoenhals (Springer, Berlin, 2002).

  21. N.G. McCrum, B.E. Read, G. Williams, in Anelastic and Dielectric Effects in Polymeric Solids (Dover, New York, 1991).

  22. W.H. Stockmayer, Pure Appl. Chem. 15, 539 (1967).

    Article  Google Scholar 

  23. S. Havriliak, S. Negami, Polymer 8, 161 (1967).

    Article  Google Scholar 

  24. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edition (Wiley, New York, 1980).

  25. G. Floudas, G. Fytas, S. Pispas, N. Hadjichristidis, T. Pakula, A.R. Khokhlov, Macromolecules 28, 5109 (1995).

    Article  Google Scholar 

  26. J. Wang, W.H. Meyer, G. Wegner, Acta Polymer 46, 233 (1995).

    Article  Google Scholar 

  27. M. Mierzwa, G. Floudas, M. Neidhoefer, R. Graf, H.W. Spiess, W.H. Meyer, G. Wegner, J. Chem. Phys. 117, 6289 (2002).

    Article  ADS  Google Scholar 

  28. A. Guinier, in X-ray Diffraction (W.H. Freeman and Company, Paris, 1963).

  29. D.J. Kinning, E.L. Thomas, Macromolecules 17, 1712 (1984).

    Article  Google Scholar 

  30. L.J. Fetters, D.J. Lohse, D. Richter, T.A. Witten, A. Zirkel, Macromolecules 27, 4639 (1994).

    Article  Google Scholar 

  31. T. Pakula, D. Vlassopoulos, G. Fytas, J. Roovers, Macromolecules 31, 8931 (1998).

    Article  Google Scholar 

  32. C.N. Likos, H. Lowen, M. Watzlawek, B. Abbas, O. Jucknischke, J. Allgaier, D. Richter, Phys. Rev. Lett. 80, 4450 (1998).

    Article  ADS  Google Scholar 

  33. B. Loppinet, G. Fytas, D. Vlassopoulos, C.N. Likos, G. Meier, G.J. Liu, Macromol. Chem. Phys. 206, 163 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Fytas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourlinos, A.B., Giannelis, E.P., Zhang, Q. et al. Surface-functionalized nanoparticles with liquid-like behavior: The role of the constituent components. Eur. Phys. J. E 20, 109–117 (2006). https://doi.org/10.1140/epje/i2006-10007-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2006-10007-3

PACS.

Navigation