Skip to main content
Log in

Role of tensile stress in actin gels and a symmetry-breaking instability

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

It has been observed experimentally that the actin gel grown from spherical beads coated with polymerization enzymes spontaneously breaks the symmetry of its spherical shape, and yields a “comet” pushing the bead forward. We propose a mechano-chemical coupling mechanism for the initialization of this symmetry breaking. Key assumptions are that the dissociation of the gel takes place mostly in the region of the external surface, and that the rates of the dissociation depend on the tensile stress in the gel. We analyze a simplified two-dimensional model with a circular substrate. Our analysis shows that the symmetric steady state is always unstable against the inhomogeneous modulation of the thickness of the gel layer, for any radius of the circular substrate. We argue that this model represents the essential feature of three-dimensional systems for a certain range of characteristic lengths of the modulation. The characteristic time of the symmetry-breaking process in our model depends linearly on the radius of curvature of the substrate surface, which is consistent with experimental results, using spherical latex beads as substrate. Our analysis of the symmetry-breaking phenomenon demonstrates aspects of mechano-chemical couplings that should be working in vivo as well as in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Gerbal, V. Laurent, A. Ott, P. Chaikin, J. Prost, Eur. Biophys. J. 29, 134 (2000).

    Article  Google Scholar 

  2. J. Taunton, B.A. Rowning, M.L. Coughlin, M. Wu, R.T. Moon, T.J. Mitchison, C.A. Larabell, J. Cell Biol. 148, 519 (2000).

    Article  Google Scholar 

  3. T.P. Loisel, R. Boujemaa, D. Pantaloni, M.F. Carlier, Nature 401, 613 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. L.A. Cameron, M.J. Footer, A. van Oudenaarden, J.A. Theriot, Proc. Natl. Acad. Sci. U.S.A. 96, 4908 (1999).

    Article  Google Scholar 

  5. V. Noireaux, R.M. Golsteyn, E. Friedrich, J. Prost, C. Antony, D. Louvard, C. Sykes, Biophys. J. 78, 1643 (2000).

    Google Scholar 

  6. D. Yarar, W. To, A. Abo, M.D. Welch, Curr. Biol. 9, 555 (1999).

    Article  Google Scholar 

  7. A. Bernheim-Grosswasser, S. Wiesner, R.M. Goldsteyn, M.-F. Carlier, C. Sykes, Nature 417, 308 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. S. Rafelski, P. Lauer, D. Portnoy, J. Theriot, http://cmgm.stanford.edu/theriot/movies.htm: Skidding moti-lity of mutant Listeria (2002).

  9. A. van Oudenaarden, Julie A. Theriot, Nature Cell Biol. 1, 493 (1999).

    Article  Google Scholar 

  10. A. Mogilner, G. Oster, Biophys. J. 84, 1591 (2003).

    Google Scholar 

  11. F. Gerbal, P. Chaikin, Y. Rabin, J. Prost, Biophys. J. 79, 2259 (2000).

    Google Scholar 

  12. L. Landau, E. Lifchitz, The Theory of Elasticity (Mir, Moscow, 1967).

  13. K. Sekimoto, F. Jülicher, J. Prost, unpublished (2001).

  14. K. Kassner, C. Misbah, J. Muller, J. Kappey, P. Kohlert, Phys. Rev. E 63, 036117 (2001). (The original literatures on the crystal growth related to the stress concentration, such as R.J. Asaro, W.A. Tiller, Metall. Trans. 3, 1789 (1972) and M.A. Grinfeld, Dokl. Akad. Nauk USSR 265, 836 (1982) are cited and described therein.)

    Article  Google Scholar 

  15. F. Gerbal, V. Noireaux, C. Sykes, F. Jülicher, P. Chaikin, A. Ott, J. Prost, R.M. Golsteyn, E. Friederich, D. Louvard, V. Laurent, M.F. Carlier, Pramana 53, 155 (1999).

    Google Scholar 

  16. J. Prost, in Physics of Bio-molecules and Cells, Les Houches Session LXXV, 2-27 July 2001, edited by H. Flyvbjerg et al. , Les Houches Summer School Series, Vol. 75 (Springer, 2002).

  17. M. Dogterom, B. Yurke, Science 278, 856 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. J. Plastino, I. Lelidis, J. Prost, C. Sykes, Eur. Biophys. J. (published on line, 09 December, 2003); DOI: 10.1007/s00249-003-0370-3.

  19. K. Tawada, K. Sekimoto, J. Theor. Biol. 150, 193 (1991).

    Google Scholar 

  20. P.A. Giardini, D.A. Fletcher, J.A. Theriot, Proc. Natl. Acad. Sci. U.S.A. 100, 6493 (2003).

    Article  Google Scholar 

  21. A. Upadhyaya, J.R. Chabot, A. Andreeva, A. Samadani, A. van Oudenaarden, Proc. Natl. Acad. Sci. U.S.A. 100, 4521 (2003).

    Article  Google Scholar 

  22. O. Campas, J.-F. Joanny, J. Prost, unpublished.

  23. L.A. Cameron, T.M. Svitkina, D. Vignjevic, J.A. Theriot, G.G. Borisy, Curr. Biol. 11, 130 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sekimoto.

Additional information

Received: 16 July 2003, Published online: 23 March 2004

PACS:

87.17.Jj Cell locomotion; chemotaxis and related directed motion - 87.15.Rn Reactions and kinetics; polymerization - 62.40. + i Anelasticity, internal friction, stress relaxation, and mechanical resonances

K. Sekimoto: Present address: Université Louis Pasteur, 3 rue de l’Université, 67084 Strasbourg, France.

J. Prost: Also at ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France.

F. Jülicher: Present address: Max Planck Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany.

A. Bernheim-Grosswasser: Present address: Chemical Engineering Department, Ben-Gurion University, P.O. Box 653, 84105 Beer-Sheva, Israel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekimoto, K., Prost, J., Jülicher, F. et al. Role of tensile stress in actin gels and a symmetry-breaking instability. Eur. Phys. J. E 13, 247–259 (2004). https://doi.org/10.1140/epje/i2003-10073-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10073-y

Keywords

Navigation