Skip to main content
Log in

Viscoelastic dewetting of a polymer film on a liquid substrate

  • Regular Articles
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The Dewetting of thin polymer films (60–300 nm) on a non-wettable liquid substrate has been studied in the vicinity of their glass transition temperature. In our experiment, we observe a global contraction of the film while its thickness remains uniform. We show that, in this case, the strain corresponds to simple extension, and we verify that it is linear with the stress applied by the surface tension. This allows direct measurement of the stress/strain response as a function of time, and thus permits the measurement of an effective compliance of the thin films. It is, however, difficult to obtain a complete viscoelastic characterization, as the short time response is highly dependant on the physical age of the sample. Experimental results underline the effects of residual stress and friction when dewetting is analyzed on rigid substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994)

    Google Scholar 

  • J.A. Forrest, Eur. Phys. J. E 8, 261 (2002)

    Article  Google Scholar 

  • M. Alcoutlabi, G.B. McKenna, J. Phys. Condens. Matter 17, R461 (2005)

  • Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 95, (2005)

  • Z. Fakhraai, S. Valadkhan, J.A. Forrest, Eur. Phys. J. E 18, 143 (2005)

    Article  Google Scholar 

  • D. Johannsmann, Eur. Phys. J. E 8, 257 (2002)

    Article  Google Scholar 

  • P.A. O'Connell, G.B. McKenna, Science 307, 1760 (2005)

    Article  ADS  Google Scholar 

  • K. Dalnoki-Veress, B.G. Nickel, C. Roth, J.R. Dutcher, Phys. Rev. E 59, 2153 (1999)

    Article  ADS  Google Scholar 

  • J.L. Masson, P.F. Green, Phys. Rev. Lett. 88, 205504 (2002)

    Article  ADS  Google Scholar 

  • J.L. Masson, P.F. Green, Phys. Rev. E 65, 031806 (2002)

    Article  ADS  Google Scholar 

  • P. Damman, N. Baudelet, G. Reiter, Phys. Rev. Lett. 91, 216101 (2003)

    Article  ADS  Google Scholar 

  • G. Reiter, M. Sferrazza, P. Damman, Eur. Phys. J. E 12, 133 (2003)

    Article  Google Scholar 

  • J.H. Xavier, Y. Pu, C. Li, M.H. Rafailovich, J. Sokolov, Macromolecules 37, 1470 (2004)

    Article  Google Scholar 

  • T. Vilmin, E. Raphael, Europhys. Lett. 72, 781 (2005)

    Article  Google Scholar 

  • G. Debregeas, P. Martin, F. Brochardwyart, Phys. Rev. Lett. 75, 3886 (1995)

    Article  ADS  Google Scholar 

  • F. BrochardWyart, G. Debregeas, R. Fondecave, P. Martin, Macromolecules 30, 1211 (1997)

    Article  Google Scholar 

  • M.P. Brenner, D. Gueyffier, Phys. Fluids 11, 737 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  • G. Reiter, Phys. Rev. Lett. 8718, 186101 (2001)

    Article  ADS  Google Scholar 

  • R. Seemann, S. Herminghaus, K. Jacobs, Phys. Rev. Lett. 87, 196101 (2001)

    Article  ADS  Google Scholar 

  • F. Saulnier, E. Raphael, P.G. de Gennes, Phys. Rev. Lett. 88, 196101 (2002)

    Article  ADS  Google Scholar 

  • F. Saulnier, E. Raphael, P.G. de Gennes, Phys. Rev. E 66, 061607 (2002)

    Article  ADS  Google Scholar 

  • V. Shenoy, A. Sharma, Phys. Rev. Lett. 88, 236101 (2002)

    Article  ADS  Google Scholar 

  • S. Herminghaus, R. Seemann, K. Jacobs, Phys. Rev. Lett. 89, 056101 (2002)

    Article  ADS  Google Scholar 

  • S. Herminghaus, K. Jacobs, R. Seemann, Eur. Phys. J. E 12, 101 (2003)

    Article  Google Scholar 

  • G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphael, Nat. Mater. 4, 754 (2005)

    Article  Google Scholar 

  • G. Reiter, P.G. de Gennes, Eur. Phys. J. E 6, 25 (2001)

    Article  MathSciNet  Google Scholar 

  • E. Dalnoki-Veress, J.A. Forrest, C. Murray, C. Gigault, J.R. Dutcher, Phys. Rev. E 6303 (2001)

  • H. Hencky, J. Rheol. 2, 169 (1931)

    Article  Google Scholar 

  • Such a definition of strain is coherent with the standard definition of the strain rate: \(\dot{\epsilon}=\dot{h}/h\). For the moderate strain used in this article, the logarithmic correction to the Hencky strain can be neglected, \(\epsilon\sim2\nu\left( 1-A/A_{0}\right)\)

  • G. Reiter, Phys. Rev. Lett. 68, 75 (1992)

    Article  ADS  Google Scholar 

  • G. Reiter, Langmuir 9, 1344 (1993)

    Article  Google Scholar 

  • M. Geoghegan, G. Krausch, Prog. Polym. Sci. 28, 261 (2003)

    Article  Google Scholar 

  • P. Muller-Buschbaum, Eur. Phys. J. E 12, 443 (2003)

    Article  Google Scholar 

  • P. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953)

  • J.D. Ferry, Viscoleastic Properties of Polymers, 3rd ed. (John Wiley & Sons, Inc., New-York, 1980)

  • G.E. Brandkrup J., Immergut C.H., Polymer Handbook, fourth ed. (John Wiley & Sons, New-York, 1999)

  • D.J. Plazek, J. Phys. Chem. 69, 3480 (1965)

    Google Scholar 

  • A. Bach, K. Almdal, H.K. Rasmussen, O. Hassager, Macromolecules 36, 5174 (2003)

    Article  Google Scholar 

  • This value is calculated from values of the viscosities given in Hassager_mac03 for molecular weight above and below the one used in this article. Extrapolation is made according to the following dependance η∼Mw 3.3

  • M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)

  • From the values of the zero shear viscosity and shear creep compliance plateau reported by Plazeck plazek_JPC65 on PS (Mw = 47 kg/mol) extrapolated to the molecular weight used in this article, the reptation time is τd =1750 s. From the values reported by Bach et al. Hassager_mac03, τd = 3380 s

  • L.C.E. Struick, Physical aging in amourphous polymers and other materials (Elsevier, New York, 1978)

  • I.M. Hodge, J. Non-Cryst. Solids 169, 211 (1994)

    Article  Google Scholar 

  • A.J. Kovacs, J. Polym. Sci. 30, 131 (1958)

    Article  Google Scholar 

  • T. Kanaya, T. Miyazaki, H. Watanabe, K. Nishida, H. Yamana, S. Tasaki, D.B. Bucknall, Polymer 44, 3769 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fretigny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodiguel, H., Fretigny, C. Viscoelastic dewetting of a polymer film on a liquid substrate. Eur. Phys. J. E 19, 185–193 (2006). https://doi.org/10.1140/epje/e2006-00021-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/e2006-00021-8

PACS.

Navigation