Skip to main content
Log in

Numerical modeling of plasma formation in skin tissues induced by nanosecond pulsed laser

  • Topical Review - Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A numerical analysis is performed to investigate the comparative contribution of the mechanisms responsible for electron gain and losses in laser-induced breakdown of the skin tissues. In this regard, we adopted a simple theoretical formulation relying on the numerical solution of a rate equation that describes the growth of the electron density due to the joined effect of multiphoton, cascade and chromophore ionization processes. Here, the rate also includes the effect of electron loss due to diffusion and recombination processes. The analysis considered skin tissue irradiated by a Nd:YAG laser radiation in the 200–550 nm wavelength range with 6 ns pulse duration full-width half-maximum (FWHM).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Authors’ comment: All relevant data have been included in the paper.]

References

  1. M.D. Kars, G. Yıldırım, Y. Gündoğdu, F. Gönce, E. Ayan, H.Ş. Kılıç, EuroBiotech J. 4, 207–215 (2020)

    Article  Google Scholar 

  2. H. Kim, J.K. Hwang, M. Jung, J. Choi, H.W. Kang, Biomed. Opt. Express 11, 7286 (2020)

  3. M.S. Nogueira, S. Maryam, M. Amissah, H. Lu, N. Lynch, S. Killeen, M. O’Riordain, S. Andersson-Engels, Sci. Rep. 11, 1–17 (2021)

    Article  Google Scholar 

  4. M. Balu, G. Lentsch, D.Z. Korta, K. König, K.M. Kelly, B.J. Tromberg, C.B. Zachary, Lasers Surg. Med. 49, 555–562 (2017)

    Article  Google Scholar 

  5. H. Kim, J.K. Hwang, M. Jung, J. Choi, H.W. Kang, Biomed. Opt. Express 12, 7286 (2020)

  6. P.K. Kennedy, IEEE J. Quantum Electron. 31, 2241–2249 (1995)

    Article  ADS  Google Scholar 

  7. Q. Feng, V.J. Moloney, C.A. Newell, M.E. Wright, K. Cook, P.K. Kennedy, D.X. Hammer, B.A. Rockwell, C.R. Thompson, IEEE J. Quantum Electron. 33, 127–137 (1997)

    Article  ADS  Google Scholar 

  8. A. Kanitz, M.R. Kalus, E.L. Gurevich, A. Ostendorf, S. Barcikowski, D. Amans, Plasma Sources Sci. Technol. 2, 103001 (2019)

    Article  ADS  Google Scholar 

  9. P.K. Kennedy, S.A. Boppart, D.X. Hammer, B.A. Rockwell, G.D. Noojin, W.P. Roach, IEEE J. Quantum Electron. 31, 2250–2257 (1995)

    Article  ADS  Google Scholar 

  10. R.K. Aldakheel, M.A. Gondal, M.M. Nasr, M.A. Almessiere, N. Idris, Talanta 217, 121062 (2020)

    Article  Google Scholar 

  11. J.J. Lee, Y. Moon, J.H. Han, S. Jeong, J. Biophotonics 10, 523–531 (2016)

    Article  Google Scholar 

  12. K. Ghaseminezhad, M. Zare, S. Lashkarara, M. Yousefzadeh, J. Aghazadeh Mohandesi, J. Appl. Polym. Sci. 137, 48587 (2019)

    Article  Google Scholar 

  13. Y. Lee, X. Mao, G.C.Y. Chan, J. Gonzalez, R.E. Russo, V. Zorba, J. Anal. At. Spectrom. 33, 1875–1883 (2018)

    Article  Google Scholar 

  14. L. Habbema, R. Verhagen, R. Van Hal, Y. Liu, B. Varghese, J. Biophotonics 5, 194–199 (2011)

    Article  Google Scholar 

  15. N.V. Volkova, I.E. Valamina, D.V. Shvidun, A.S. Rebrieva, N.S. Sadick, J. Cosmet. Dermatol. 19, 1294–1299 (2019)

    Article  Google Scholar 

  16. J. Hornef, C.M. Edelblute, K.H. Schoenbach, R. Heller, S. Guo, C. Jiang, Sci. Rep. 10, 1–10 (2020)

    Article  Google Scholar 

  17. C.H. Fan, J. Sun, J.P. Longtin, J. Appl. Phys. 91, 2530–2536 (2002)

    Article  ADS  Google Scholar 

  18. P.U. Rogov, S.V. Smirnov, V.A. Semenova, M.V. Melnik, V.G. Bespalov, J. Phys. Conf. Ser. 7, 012047 (2016)

    Article  Google Scholar 

  19. J.H. Han, Y. Moon, J.J. Lee, S. Choi, Y.C. Kim, S. Jeong, Biomed. Opt. Express 7, 57 (2016)

  20. X. Sun, Z.Z. He, Z.S. Deng, Y.X. Zhou, J. Liu, Minim. Invasive Ther. Allied Technol. 27, 233–241 (2017)

    Article  Google Scholar 

  21. J.H. Choi, S. Shin, Y. Moon, J.H. Han, E. Hwang, S. Jeong, Spectrochim. Acta Part B At. Spectrosc. 179, 106090 (2021)

    Article  Google Scholar 

  22. J. Jiao, Z. Guo, Appl. Phys. B 103, 195–205 (2010)

    Article  ADS  Google Scholar 

  23. F. Docchio, EPL 6, 407–412 (1988)

    Article  ADS  Google Scholar 

  24. L. Keldysh, Sov. Phys. JETP 20, 1307–1314 (1965)

    Google Scholar 

  25. G.L. Yudin, M.Y. Ivanov, Phys. Rev. A 64, 013409 (2001)

    Article  ADS  Google Scholar 

  26. A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys. JETP 23, 924–934 (1966)

    ADS  Google Scholar 

  27. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.P. Wolf, Rep. Prog. Phys. 70, 1633–1713 (2007)

    Article  ADS  Google Scholar 

  28. J.P. Longtin, C.L. Tien, Int. J. Heat Mass Transf. 40, 951–959 (1997)

    Article  Google Scholar 

  29. A. Bierstedt, Y. You, S. van Wasen, G. Bosc-Bierne, M. Weller, J. Riedel, Anal. Chem. 91, 5922–5928 (2019)

    Article  Google Scholar 

  30. C. Ferris, Theoretical modeling of laser-induced absorption phenomena in optical materials. PhD thesis (2014) pp. 19–20

  31. R. Boge, C. Cirelli, A.S. Landsman, S. Heuser, A. Ludwig, J. Maurer, M. Weger, L. Gallmann, U. Keller, Phys. Rev. Lett. 111, 1030031–10300315 (2013)

  32. M. Uiberacker, T. Uphues, M. Schultze, A.J. Verhoef, V. Yakovlev, M.F. Kling, J. Rauschenberger, N.M. Kabachnik, H. Schröder, M. Lezius, K.L. Kompa, H.G. Muller, M.J.J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, Nature 446, 627–632 (2007)

    Article  ADS  Google Scholar 

  33. L. Ji Amina, T. Yan, and R. Ma, Adv. Optoelectron. 2, 19000301–19000307 (2019)

  34. Q. Fang, X.H. Hu, IEEE J. Quantum Electron. 40, 69–77 (2004)

    Article  ADS  Google Scholar 

  35. A. Giacomo, M. Dell’Aglio, O. De Pascale, M. Capitelli, Spectrochim. Acta B 62, 721–738 (2007)

    Article  ADS  Google Scholar 

  36. F. Docchio, P. Regondi, M.R. Capon, J. Mellerio, Appl. Opt. 27, 3661–3668 (1988)

    Article  ADS  Google Scholar 

  37. P.K. Kennedy, D.X. Hammer, B.A. Rockwell, Prog. Quantum Electron. 21, 155–248 (1997)

    Article  ADS  Google Scholar 

  38. J. Noack, A. Vogel, IEEE J. Quantum. Electron. 35, 1156–1167 (1999)

    Article  ADS  Google Scholar 

  39. A. Sharma, M.N. Slipchenko, M.N. Shneider, X. Wang, K.A. Rahman, A. Shashurin, Sci. Rep. 8, 1–10 (2018)

  40. J. Jiao, Z. Guo, Appl. Phys. B 103, 195–205 (2011)

    Article  ADS  Google Scholar 

  41. J. Jiao, Simulation of laser-tissue thermal interaction and plasma-mediated ablation (Doctoral dissertation, Rutgers University-Graduate School-New Brunswick) (2011)

  42. N. Linz, S. Freidank, X.X. Liang, A. Vogel, Phys. Rev. B 94, 024113 (2016)

    Article  ADS  Google Scholar 

  43. N. Linz, X. X. Liang, J. Noack and A. Vogel, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (2009)

Download references

Acknowledgements

This work was supported by the Serbian Ministry of Education, Science and Technological Development (Agreement No. 451-03-9/2021-14/200122), RS MESTD, Project No. OI 171020, COST Action CA17126 “Towards understanding and modelling intense electronic excitation” and Madrid Regional Government project BIOPIELTEC-CM (S2018/BAA-4480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hristina Delibasic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delibasic, H., Petrovic, V., Petrovic, I. et al. Numerical modeling of plasma formation in skin tissues induced by nanosecond pulsed laser. Eur. Phys. J. D 75, 155 (2021). https://doi.org/10.1140/epjd/s10053-021-00170-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00170-z

Navigation