Skip to main content
Log in

Constraining domain wall dark matter with a network of superconducting gravimeters and LIGO

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

There is strong astrophysical evidence that dark matter (DM) makes up some 27% of all mass in the universe. Yet, beyond gravitational interactions, little is known about its properties or how it may connect to the Standard Model. Multiple frameworks have been proposed, and precision measurements at low energy have proven useful to help restrict the parameter space for many of these models. One set of models predicts that DM is a scalar field that “clumps” into regions of high local density, rather than being uniformly distributed throughout the galaxy. If this DM field couples to a Standard Model field, its interaction with matter can be thought of as changing the effective values of fundamental constants. One generic consequence of time variation of fundamental constants (or their spatial variation as the Earth passes through regions of varying density) is the presence of an anomalous, composition-dependent acceleration. Here we show how this anomalous acceleration can be measured using superconducting accelerometers, and demonstrate that > 20 years of archival data from the International Geodynamics and Earth Tide Services (IGETS) network can be utilized to set new bounds on these models. Furthermore, we show how LIGO and other gravitational wave detectors can be used as exquisitely sensitive probes for narrow ranges of the parameter space. While limited to DM models that feature spatial gradients, these two techniques complement the networks of precision measurement devices already in use for direct detection and identification of dark matter.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. O’Hare, Phys. Rev. D: Part. Fields 94, 063527 (2016)

    Article  ADS  Google Scholar 

  2. P. Sikivie, Tech. Rep. 16 (1983)

  3. P.W. Graham, I.G. Irastorza, S.K. Lamoreaux, A. Lindner, K.A. van Bibber, Annu. Rev. Nucl. Part. Sci. 65, 485 (2015)

    Article  ADS  Google Scholar 

  4. R.A. Battye, M. Bucher, D. Spergel, [arXiv: astro-ph/9908047] (1999)

  5. P. Sikivie, Phys. Rev. Lett. 48, 1156 (1982)

    Article  ADS  Google Scholar 

  6. A. Friedland, H. Murayama, M. Perelstein, Phys. Rev. D: Part. Fields 67, 043519 (2003)

    Article  ADS  Google Scholar 

  7. B. Roberts, P. Delva, A. Al-Masoudi, A. Amy-Klein, C. Baerentsen, C. Baynham, E. Benkler, S. Bilicki, W. Bowden, E. Cantin, et al., [arXiv: 1907.02661] (2019)

  8. P. Wcisło, P. Morzyński, M. Bober, A. Cygan, D. Lisak, R. Ciuryło, M. Zawada, Nat. Astron. 1, 0009 (2016)

    Article  ADS  Google Scholar 

  9. A. Derevianko, M. Pospelov, Nat. Phys. 10, 933 (2014)

    Article  Google Scholar 

  10. B.M. Roberts, G. Blewitt, C. Dailey, M. Murphy, M. Pospelov, A. Rollings, J. Sherman, W. Williams, A. Derevianko, Nat. Commun. 8, 1195 (2017)

    Article  ADS  Google Scholar 

  11. A. Banerjee, D. Budker, J. Eby, H. Kim, G. Perez, [arXiv: 1902.08212] (2019)

  12. S. Afach, D. Budker, G. DeCamp, V. Dumont, Z.D. Grujić, H. Guo, D.J. Kimball, T. Kornack, V. Lebedev, W. Li, et al., Phys. Dark Univ. 22, 162 (2018)

    Article  Google Scholar 

  13. D.J. Kimball, D. Budker, J. Eby, M. Pospelov, S. Pustelny, T. Scholtes, Y. Stadnik, A. Weis, A. Wickenbrock, Phys. Rev. D: Part. Fields 97, 043002 (2018)

    Article  ADS  Google Scholar 

  14. S. Pustelny, D.F. Jackson Kimball, C. Pankow, M.P. Ledbetter, P. Wlodarczyk, P. Wcislo, M. Pospelov, J.R. Smith, J. Read, W. Gawlik, et al., Ann. Phys. 525, 659 (2013)

    Article  Google Scholar 

  15. M. Pospelov, S. Pustelny, M. Ledbetter, D.J. Kimball, W. Gawlik, D. Budker, Phys. Rev. Lett. 110, 021803 (2013)

    Article  ADS  Google Scholar 

  16. W.H. Press, B.S. Ryden, D.N. Spergel, Astrophys. J. 347, 590 (1989)

    Article  ADS  Google Scholar 

  17. J.P. Uzan, Rev. Mod. Phys. 75, 403 (2003)

    Article  ADS  Google Scholar 

  18. K. Nordtvedt, Phys. Rev. Lett. 65, 953 (1990)

    Article  ADS  Google Scholar 

  19. J.M. Goodkind, Rev. Sci. Instrum. 70, 4131 (1999)

    Article  ADS  Google Scholar 

  20. H. Virtanen, A. Raja-Halli, in Parallel Observations with Three Superconducting Gravity Sensors During 2014–2015 at Metsähovi Geodetic Research Station, Finland (2019), pp. 75–87.

  21. N.A. Flowers, C. Goodge, J.D. Tasson, Phys. Rev. Lett. 119, 201101 (2017)

    Article  ADS  Google Scholar 

  22. C.G. Shao, Y.F. Chen, R. Sun, L.S. Cao, M.K. Zhou, Z.K. Hu, C. Yu, H. Müller, Phys. Rev. D: Part. Fields 97, 024019 (2018)

    Article  ADS  Google Scholar 

  23. C.J. Horowitz, R. Widmer-Schnidrig, [arXiv: 1912.00940] (2019)

  24. W. Hu, M. Lawson, D. Budker, N.L. Figueroa, D.F.J. Kimball, A.P.J. Mills, C. Voigt, [arXiv: 1912.01900] (2019).

  25. D. Banka, D. Crossley, Tech. Rep. 1 (1999)

  26. W.A. Terrano, E.G. Adelberger, C.A. Hagedorn, B.R. Heckel, Phys. Rev. Lett. 122, 231301 (2019)

    Article  ADS  Google Scholar 

  27. Y. Stadnik, V. Flambaum, Phys. Rev. Lett. 114, 161301 (2015)

    Article  ADS  Google Scholar 

  28. Y. Stadnik, V. Flambaum, Phys. Rev. A: At. Mol. Opt. Phys. 93, 063630 (2016)

    Article  ADS  Google Scholar 

  29. H. Grote, Y. Stadnik, Phys. Rev. Res. 1, 033187 (2019)

    Article  Google Scholar 

  30. B.P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, et al., Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Aasi, B. Abbott, R. Abbott, T. Abbott, M. Abernathy, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, et al., Classical Quantum Gravity 32, 074001 (2015)

    Article  ADS  Google Scholar 

  32. G.G. Raffelt, Annu. Rev. Nucl. Part. Sci. 49, 163 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rees L. McNally.

Additional information

Contribution to the Topical Issue “Quantum Technologies for Gravitational Physics”, edited by Tanja Mehlstäubler, Yanbei Chen, Guglielmo M. Tino and Hsien-Chi Yeh.

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNally, R.L., Zelevinsky, T. Constraining domain wall dark matter with a network of superconducting gravimeters and LIGO. Eur. Phys. J. D 74, 61 (2020). https://doi.org/10.1140/epjd/e2020-100632-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100632-0

Navigation