Skip to main content
Log in

Experiments of keV negative ions transmitted through straight and tapered glass capillaries: tilt angle dependence

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this study, experiments are performed to study the transmission of 15 keV C ions through straight and tapered borosilicate glass capillaries. The tilt angle is varied from 0° to 0.8°. In a straight capillary, the transmitted ions produced only one spot on the detector, and its intensity declined with increasing tilt angle. In this case, almost 98% of the transmitted particles maintained their initial charge. However, in the tapered capillary, the transmitted particles formed a different pattern composed of a core and a halo. The negative ion fractions of the core and the halo were 97.5% and 42.5% at a 0° tilt angle, respectively. Therefore, the particles formed the halo by scattering after colliding with the inner surface of the capillary, and most of them were neutralized. As the tilt angle increased, the intensity and negative ion fraction of the transmitted particles declined, and the halo gradually became quite asymmetric. These results indicate that the scattering process plays a role in the transmission.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yamazaki, Nucl. Instrum. Methods Phys. Res. B 258, 139 (2007).

    Article  ADS  Google Scholar 

  2. A.V. Krasheninnikov, F. Banhart, Nat. Mater. 6, 723 (2007).

    Article  ADS  Google Scholar 

  3. M. Mehta, D. Reuter, A. Melnikov, A.D. Wieck, Appl. Phys. Lett. 91, 123108 (2007).

    Article  ADS  Google Scholar 

  4. N. Stolterfoht, J.-H. Bremer, V. Hoffmann, R. Hellhammer, D. Fink, A. Petrov, B. Sulik, Phys. Rev. Lett. 88, 133201 (2002).

    Article  ADS  Google Scholar 

  5. C. Lemell, J. Burgdörfer, F. Aumayr, Prog. Surf. Sci. 88, 237 (2013).

    Article  ADS  Google Scholar 

  6. P. Skog, H.Q. Zhang, R. Schuch, Phys. Rev. Lett. 101, 223202 (2008).

    Article  ADS  Google Scholar 

  7. N. Stolterfoht, R. Hellhammer, Z.D. Pešić, V. Hoffmann, J. Bundesmann, A. Petrov, D. Fink, B. Sulik, M. Shah, K. Dunn, J. Pedregosa, R.W. McCullough, Nucl. Instrum. Methods Phys. Res. B 225, 169 (2004).

    Article  ADS  Google Scholar 

  8. N. Stolterfoht, R. Hellhammer, Z.D. Pešić, V. Hoffmann, J. Bundesmann, A. Petrov, D. Fink, B. Sulik, Surf. Coat. Technol. 196, 389 (2005).

    Article  Google Scholar 

  9. N. Stolterfoht, Y. Yamazaki, Phy. Rep. 629, 1 (2016).

    Article  ADS  Google Scholar 

  10. T. Nebiki, T. Yamamoto, T. Narusawa, M.B.H. Breese, E.J. Teo, F. Watt, J. Vac. Sci. Tech. A 21, 1671 (2003).

    Article  ADS  Google Scholar 

  11. T. Ikeda, Y. Kanai, T.M. Kojima, Y. Iwai, T. Kambara, Y. Yamazaki, Appl. Phys. Lett. 89, 163502 (2006).

    Article  ADS  Google Scholar 

  12. G. Sun, J. Wang, Y. Chen, J. Xu, C. Zhou, J. Shao, Y.C.B. Ding, Y. Yin, X. Wang, F. Lou, X. Lv, X. Qiu, J. Jia, L. Chen, F. Xi, Z. Chen, L. Li, Z. Liu, Phys. Rev. A 79, 052902 (2009).

    Article  ADS  Google Scholar 

  13. L. Chen, X. Lv, J. Jia, M. Ji, P. Zhou, G. Sun, J. Wang, Y. Chen, F. Xi, Y. Cui, J. Shao, X. Qiu, Y. Guo, X. Chen, J. Phys. B 44, 045203 (2011).

    Article  ADS  Google Scholar 

  14. H. Wang, L. Chen, X. Lv, C. Zhou, J. Jia, P. Zhou, J. Shao, M. Ji, X. Chen, Nucl. Instrum. Methods Phys. Res. B 286, 351 (2012).

    Article  ADS  Google Scholar 

  15. L. Chen, Y. Guo, J. Jia, H. Zhang, Y. Cui, J. Shao, Y. Yin, X. Qiu, X. Lv, G. Sun, J. Wang, Y. Chen, F. Xi, X. Chen, Phys. Rev. A 84, 032901 (2011).

    Article  ADS  Google Scholar 

  16. D. Feng, J. Shao, L. Zhao, M. Ji, X. Zou, G. Wang, Y. Ma, W. Zhou, H. Zhou, Y. Li, M. Zhou, X. Chen, Phys. Rev. A 85, 064901 (2012).

    Article  ADS  Google Scholar 

  17. P. Pan, S.T. Niu, H.Y. Song, X.M. Chen, X.Y. Qiu, J.X. Shao, Nucl. Instrum. Methods Phys. Res. B 450, 327 (2019).

    Article  ADS  Google Scholar 

  18. Q. Zhang, Z.L. Liu, P.F. Li, B. Jin, G.Y. Song, D.K. Jin, B. Niu, L. Wei, S. Ha, Y.M. Xie, Y. Ma, C.L. Wan, Y. Cui, P. Zhou, H.Q. Zhang, X.M. Chen, Phys. Rev. A 97, 042704 (2018).

    Article  ADS  Google Scholar 

  19. J. Hasegawa, S. Jaiyen, C. Polee, N. Chankow, Y. Oguri, J. Appl. Phys. 110, 044913 (2011).

    Article  ADS  Google Scholar 

  20. M.J. Simon, C.L. Zhou, M. Döbeli, A. Cassimi, I. Monnet, A. Méry, C. Grygiel, S. Guillous, T. Madi, A. Benyagoub, H. Lebius, A.M. Müller, H. Shiromaru, H.-A. Syn, Nucl. Instrum. Methods Phys. Res. B 330, 11 (2014).

    Article  ADS  Google Scholar 

  21. H.Q. Zhang, N. Akram, R. Schuch, Phys. Rev. A 94, 032704 (2016).

    Article  ADS  Google Scholar 

  22. A.X. Yang, B.H. Zhu, S.T. Niu, P. Pan, C.Z. Han, H.Y. Song, J.X. Shao, X.M. Chen, Phys. Rev. A 97, 052706 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aixiang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Yang, Z., Yu, L. et al. Experiments of keV negative ions transmitted through straight and tapered glass capillaries: tilt angle dependence. Eur. Phys. J. D 74, 208 (2020). https://doi.org/10.1140/epjd/e2020-100615-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100615-7

Keywords

Navigation