Skip to main content
Log in

New symmetric and planar designs of reversible full-adders/subtractors in quantum-dot cellular automata

  • Research Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Quantum-dot Cellular Automata (QCA) is one of the emerging nanotechnologies, promising an alternative to CMOS technology due to a faster speed, smaller size, lower power consumption, higher scale integration, and higher switching frequency. In addition, power dissipation is the main limitation of all the nanoelectronics design techniques including the QCA. Researchers have proposed various mechanisms to solve this problem. Among them, reversible computing is considered as a reliable solution to reduce the power dissipation. On the other hand, adders are fundamental circuits for most digital systems. So, in this paper, the focus is on designing of reversible full-adders in logical and layout levels. For this aim, the first, a method for converting irreversible functions to reversible ones is investigated. Based on it, two novel designs of reversible full-adders/subtractors are presented. In another section, a new five-input majority gate is introduced. By using of this gate, a new reversible full-adder is designed. Finally, the proposed structures are extended to design three new 8-bit reversible full-adder/subtractors. The results are indicative of the outperformance of the proposed designs in comparison with the best available ones in terms of area, complexity, delay, reversible/irreversible layout, and also in logic level in terms of garbage outputs, control inputs, number of majority and NOT gates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Landauer, IBM J. Res. Dev. 5, 183 (1961)

    Article  Google Scholar 

  2. C. Bennett, Maxwell’s Demon. Entropy, Information, Computing (1973), pp. 197–204

  3. C.S. Lent, P.D. Tougaw, W. Porod, G.H. Bernstein, Nanotechnology 4, 49 (1993)

    Article  ADS  Google Scholar 

  4. C.S. Lent, P.D. Tougaw, Proc. IEEE 85, 541 (1997)

    Article  Google Scholar 

  5. , International Technology Roadmap for Semiconductors (ITRS), http://www.itrs.net (2013)

  6. M. Kianpour, R. Sabbaghi-Nadooshan, Microprocessors Microsys. 38, 1046 (2014)

    Article  Google Scholar 

  7. M. Kamuf, J.N. Rodrigues, J.B. Anderson, V. Öwall, Microprocessors Microsys. 34, 129 (2010)

    Article  Google Scholar 

  8. M.A. Tehrani, Y. Mahmoodi, K. Navi, Quantum Matter 2, 474 (2013)

    Article  Google Scholar 

  9. I. Amlani, A.O. Orlov, R.K. Kummamuru, G.H. Bernstein, C.S. Lent, G.L. Snider, Appl. Phys. Lett. 77, 738 (2000)

    Article  ADS  Google Scholar 

  10. K. Hennessy, C.S. Lent, J. Vac. Sci. Technol. B 19, 1752 (2001)

    Article  Google Scholar 

  11. J. Timler, C.S. Lent, J. Appl. Phys. 94, 1050 (2003)

    Article  ADS  Google Scholar 

  12. C.S. Lent, M. Liu, Y. Lu, Nanotechnology 17, 4240 (2006)

    Article  ADS  Google Scholar 

  13. Z. Rumi, K. Walus, W. Wei, G.A. Jullien, Performance comparison of quantum-dot cellular automata adders, in2005 IEEE International Symposium on Circuits and Systems (2005), Vol. 3, pp. 2522-2526

  14. H. Cho, E. Swartzlander, Pipelined carry lookahead adder design in quantum-dot cellular automata, in Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, 2015 (IEEE, 2005), pp.1191-1195

  15. H. Cho, E. Swartzlander, Modular design of conditional sum adders using quantum-dot cellular automata, in 2006 Sixth IEEE Conference on Nanotechnology (IEEE, 2006), Vol. 1, pp. 363-366

  16. H. Cho, E.E. Swartzlander, IEEE Trans. Nanotechnol. 6, 374 (2007)

    Article  ADS  Google Scholar 

  17. P.D. Tougaw, C.S. Lent, J. Appl. Phys. 75, 1818 (1994)

    Article  ADS  Google Scholar 

  18. H. Cho, E.E. SwartzlanderJr., IEEE Trans. Comput. 58, 721 (2009)

    Article  MathSciNet  Google Scholar 

  19. A. Roohi, S. Sayedsalehi, H. Khademolhosseini, K. Navi, J. Comput. Theor. Nanosci. 10, 380 (2013)

    Article  Google Scholar 

  20. K. Navi, R. Farazkish, S. Sayedsalehi, M.R. Azghadi, Microelectron. J. 41, 820 (2010)

    Article  Google Scholar 

  21. A. Roohi, H. Khademolhosseini, S. Sayedsalehi, K. Navi, J. Comput. Electron. 13, 701 (2014)

    Article  Google Scholar 

  22. R. Zhang, K. Walus, W. Wang, G.A. Jullien, IEEE Trans. Nanotechnol. 3, 443 (2004)

    Article  ADS  Google Scholar 

  23. M.R. Azghadi, O. Kavehei, K. Navi, J. Appl. Sci. 7, 3460 (2007)

    Article  Google Scholar 

  24. C.S. Lent, S.E. Frost, P.M. Kogge, Reversible computation with quantum-dot cellular automata (QCA), in Proceedings of the 2nd Conference on Computing frontiers (ACM, 2005), p. 403

  25. X. Ma, J. Huang, C. Metra, F. Lombardi, J. Electron. Test. 24, 297 (2008)

    Article  Google Scholar 

  26. H. Thapliyal, N. Ranganathan, Conservative qca gate (cqca) for designing concurrently testable molecular qca circuits, in 2009 22nd International Conference on VLSI Design (IEEE, 2009), pp. 511-516

  27. K. Das, D. De, Novel approach to design a testable conservative logic gate for QCA implementation, in 2010 IEEE 2nd International Advance Computing Conference (IACC) (IEEE, 2010), pp. 82-87

  28. B. Sen, T. Adak, A.S. Anand, B.K. Sikdar, Synthesis of reversible universal QCA gate structure for energy efficient digital design, in TENCON 2011–2011 IEEE Region 10 Conference (IEEE, 2011), pp. 806-810

  29. Z. Mohammadi, M. Mohammadi, Quantum Inf. Process. 13, 2127 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Kianpour, R. Sabbaghi-Nadooshan, J. Comput. Electron. 16, 459 (2017)

    Article  Google Scholar 

  31. M. Crocker, X.S. Hu, M. Niemier, M. Yan, G. Bernstein, IEEE Trans. Nanotechnol. 7, 376 (2008)

    Article  ADS  Google Scholar 

  32. A. Roohi, H. Khademolhosseini, S. Sayedsalehi, K. Navi, Implementation of reversible logic design in nanoelectronics on basis of majority gates, in 2012 16th CSI International Symposium on Computer Architecture and Digital Systems (CADS) (IEEE, 2012(, pp. 1-6

  33. M. Maity, P. Ghosal, B. Das, Universal reversible logic gate design for low power computation at nano-scale, in 2012 Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia) (IEEE, 2012), pp. 173-177

  34. Y. Huang, T.F. Edgar, D.M. Himmelblau, I. Trachtenberg, IEEE Trans. Semicond. Manuf. 7, 333 (1994)

    Article  Google Scholar 

  35. X. Ma, J. Huang, C. Metra, F. Lombardi, Reversible and testable circuits for molecular QCA design, in Emerging Nanotechnologies (Springer, 2008), pp. 157-202

  36. A. Naghibzadeh, M. Houshmand, J. Comput. Electron. 16, 883 (2017)

    Article  Google Scholar 

  37. M. Sarvaghad-Moghaddam, A.A. Orouji, M. Houshmand, J. Comput. Electron. 16, 162 (2017)

    Article  Google Scholar 

  38. W. Wang, K. Walus, G.A. Jullien, Quantum-dot cellular automata adders, in 2003 Third IEEE Conference on Nanotechnology, IEEE-NANO 2003 (IEEE, 2003), Vol. 1, pp. 461-464

  39. Y.-J. Duan, X.-W. Zha, X.-M. Sun, J.-F. Xia, Int. J. Theor. Phys. 53, 2697 (2014)

    Article  Google Scholar 

  40. J. Huang, F. Lombardi, Design and Test of Digital Circuits by Quantum-Dot Cellular Automata (Artech House, 2008)

  41. A. Orlov, I. Amlani, G. Bernstein, C. Lent, G. Snider, Science 277, 928 (1997)

    Article  Google Scholar 

  42. M. Kianpour, R. Sabbaghi-Nadooshan, K. Navi, J. Comput. Syst. Sci. 80, 1404 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moein Sarvaghad-Moghaddam or Ali A. Orouji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarvaghad-Moghaddam, M., Orouji, A.A. New symmetric and planar designs of reversible full-adders/subtractors in quantum-dot cellular automata. Eur. Phys. J. D 73, 125 (2019). https://doi.org/10.1140/epjd/e2019-90315-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90315-x

Keywords

Navigation