Skip to main content

Advertisement

Log in

Atmospheric pressure plasma jet for biomedical applications characterised by passive thermal probe

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Atmospheric pressure plasma jets (APPJs) are a promising tool in medicine with extensive possibilities of utilization. For a safe and therapeutically effective application of APPJs, it is necessary to know in detail the physical processes in plasma as well as possible hazards. In this paper, we focus on plasma thermal energy transferred to the substrate, i.e. to a passive thermal probe acting as substrate dummy. Specifically, we examined the dependence of transferred energy on the distance from the plasma source outlet, on the gas flow rate, and on the length of the visible plasma plume. The plasma plume is the plasma carried by the gas flow from the outlet of the source into the ambient air. The results show the distance between the plasma-generating device and the substrate to be the most important determinant of the transferred thermal energy, among the three examined variables. Most importantly for the end-user, the results also show this relation to be non-linear. To describe this relation, we chose a model based on a Boltzmann type of sigmoid function. Based on the results of our modelling and visual inspection of the plasma, we provide sort of a user guide for the adjustment of a suitable energy flux on the (bio) substrate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. von Woedtke, H.R. Metelmann, K.D. Weltmann, Contrib. Plasma Phys. 54, 104 (2014)

    Article  ADS  Google Scholar 

  2. K.D. Weltmann, T. von Woedtke, Plasma Phys. Control. Fusion 59, 014031 (2017)

    Article  ADS  Google Scholar 

  3. B. Haertel, T. von Woedtke, K.D. Weltmann, U. Lindequist, Biomol. Ther. 22, 477 (2014)

    Article  Google Scholar 

  4. F. Brehmer, H.A. Haenssle, G. Daeschlein, R. Ahmed, S. Pfeiffer, A. Görlitz, D. Simon, M.P. Schön, D. Wandke, S. Emmert, J. Eur. Acad. Dermatol. Venereol. 29, 148 (2015)

    Article  Google Scholar 

  5. D. Mance, Med. Flum. 53, 179 (2017)

    Article  Google Scholar 

  6. Y. Ma, C.S. Ha, S.W. Hwang, H.J. Lee, G.C. Kim, K.W. Lee, K. Song, PLoS One 9, e91947 (2014)

    Article  ADS  Google Scholar 

  7. K. Panngom, K.Y. Baik, M.K. Nam, J.H. Han, H. Rhim, E.H. Choi, Cell Death Dis. 4, e642 (2013)

    Article  Google Scholar 

  8. S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, M. Hori, Appl. Phys. Lett. 100, 113702 (2012)

    Article  ADS  Google Scholar 

  9. C. Hoffmann, C. Berganza, J. Zhang, Med. Gas Res. 3, 21 (2013)

    Article  Google Scholar 

  10. Y.H. Ryu, Y.H. Kim, J.Y. Lee, G.B. Shim, H.S. Uhm, G. Park, E.H. Choi, PLoS One 8, e66231 (2013)

    Article  ADS  Google Scholar 

  11. H. Jablonowski, T. von Woedtke, Clin. Plasma Med. 3, 42 (2015)

    Article  Google Scholar 

  12. D. Mance, H. Geilmann, W.A. Brand, T. Kewitz, H. Kersten, Plasma Process. Polym. 14, e1600239 (2017)

    Article  Google Scholar 

  13. K.D. Weltmann, T. von Woedtke, Eur. Phys. J. Appl. Phys. 55, 13807 (2011)

    Article  ADS  Google Scholar 

  14. K.H. Schoenbach, K. Becker, Eur. Phys. J. D 70, 29 (2016)

    Article  ADS  Google Scholar 

  15. K.D. Weltmann, E. Kindel, R. Brandenburg, C. Meyer, R. Bussiahn, C. Wilke, T. von Woedtke, Contrib. Plasma Phys. 49, 631 (2009)

    Article  ADS  Google Scholar 

  16. S. Bornholdt, M. Wolter, H. Kersten, Eur. Phys. J. D 60, 653 (2010)

    Article  ADS  Google Scholar 

  17. K. Wende, S. Bekeschus, A. Schmidt, L. Jatsch, S. Hasse, K.D. Weltmann, K. Masur, T. von Woedtke, Mutat. Res. Genet. Toxicol. Environ. Mutagen. 789, 48 (2016)

    Article  Google Scholar 

  18. S. Reuter, J. Winter, S. Iséni, A. Schmidt-Bleker, M. Dünnbier, K. Masur, K. Wende, K.D. Weltmann, IEEE Trans. Plasma Sci. 43, 3185 (2015)

    Article  ADS  Google Scholar 

  19. A. Schmidt-Bleker, J. Winter, A. Bösel, S. Reuter, K.D. Weltmann, Plasma Sour. Sci. Technol. 25, 015005 (2016)

    Article  ADS  Google Scholar 

  20. J. Gay-Mimbrera, M.C. García, B. Isla-Tejera, A. Rodero-Serrano, A.V. García-Nieto, J. Ruano, Adv. Ther. 33, 894 (2016)

    Article  Google Scholar 

  21. D.M. Hepburn, I.J. Kemp, A.J. Shields, IEEE Trans. Electr. Insul. Mag. 16, 19 (2000)

    Article  Google Scholar 

  22. H. Kersten, D. Rohde, J. Berndt, H. Deutsch, R. Hippler, Thin Solid Films 377, 585 (2000)

    Article  ADS  Google Scholar 

  23. M. Stahl, T. Trottenberg, H. Kersten, Rev. Sci. Instrum. 81, 023504 (2010)

    Article  ADS  Google Scholar 

  24. S. Bornholdt, T. Peter, T. Strunskus, V. Zaporojtchenko, F. Faupel, H. Kersten, Surf. Coat. Technol. 205, S388 (2011)

    Article  Google Scholar 

  25. A.M. Brown, Comput. Methods Programs Biomed. 65, 191 (2001)

    Article  Google Scholar 

  26. D.J. Jin, H.S. Uhm, G. Cho, Phys. Plasmas 20, 083513 (2013)

    Article  ADS  Google Scholar 

  27. S. Iseni, A. Schmidt-Bleker, J. Winter, K.D. Weltmann, S. Reuter, J. Phys. D: Appl. Phys. 47, 152001 (2014)

    Article  ADS  Google Scholar 

  28. S. Wu, Z. Wang, Q. Huang, X. Tan, X. Lu, K. Ostrikov, Phys. Plasmas 20, 023503 (2013)

    Article  ADS  Google Scholar 

  29. S. Reuter, J. Winter, A. Schmidt-Bleker, D. Schroeder, H. Lange, N. Knake, V. Schulz-von der Gathen, K.D. Weltmann, Plasma Sources Sci. Technol. 21, 024005 (2012)

    Article  ADS  Google Scholar 

  30. S. Reuter, H. Tresp, K. Wende, M.U. Hammer, J. Winter, K. Masur, A. Schmidt-Bleker, K.D. Weltmann, IEEE Trans. Plasma Sci. 40, 2986 (2012)

    Article  ADS  Google Scholar 

  31. P.J. Cullen, V. Milosavljević, Prog. Theor. Exp. Phys. 6, 063J01 (2015)

    Article  Google Scholar 

  32. M. Pinchuk, O. Stepanova, N. Kurakina, V. Spodobin, J. Phys. Conf. Ser. 830, 012060 (2017)

    Article  Google Scholar 

  33. M.D.V.S. Mussard, E. Foucher, A. Rousseau, J. Phys. D: Appl. Phys. 48, 424003 (2015)

    Article  ADS  Google Scholar 

  34. T. Kewitz, M. Fröhlich, J. von Frieling, H. Kersten, IEEE Trans. Plasma Sci. 43, 1769 (2015)

    Article  ADS  Google Scholar 

  35. S. Bekeschus, A. Schmidt, K.-D. Weltmann, T. von Woedtke, Clin. Plasma Med. 4, 19 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Mance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mance, D., Wiese, R., Kewitz, T. et al. Atmospheric pressure plasma jet for biomedical applications characterised by passive thermal probe. Eur. Phys. J. D 72, 98 (2018). https://doi.org/10.1140/epjd/e2018-80768-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-80768-8

Keywords

Navigation