Skip to main content
Log in

MCDF calculations of Auger cascade processes

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We model the multiple ionization of near-neutral core-excited atoms where a cascade of Auger processes leads to the emission of several electrons. We utilize the multiconfiguration Dirac-Fock (MCDF) method to generate approximate wave functions for all fine-structure levels and to account for all decays between them. This approach allows to compute electron spectra, the population of final-states and ion yields, that are accessible in many experiments. Furthermore, our approach is based on the configuration interaction method. A careful treatment of correlation between electronic configurations enables one to model three-electron processes such as an Auger decay that is accompanied by an additional shake-up transition. Here, this model is applied to the triple ionization of atomic cadmium, where we show that the decay of inner-shell 4p holes to triply-charged final states is purely due to the shake-up transition of valence 5s electrons.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H.D. Eland, O. Vieuxmaire, T. Kinugawa, P. Lablanquie, R.I. Hall, F. Penent, Phys. Rev. Lett. 90, 053003 (2003)

    Article  ADS  Google Scholar 

  2. J. Andersson, R. Beerwerth, P. Linusson, J.H.D. Eland, V. Zhaunerchyk, S. Fritzsche, R. Feifel, Phys. Rev. A 92, 023414 (2015)

    Article  ADS  Google Scholar 

  3. F. Penent, J. Palaudoux, P. Lablanquie, L. Andric, R. Feifel, J.H.D. Eland, Phys. Rev. Lett. 95, 083002 (2005)

    Article  ADS  Google Scholar 

  4. A. Müller, A. Borovik, T. Buhr, J. Hellhund, K. Holste, A.L.D. Kilcoyne, S. Klumpp, M. Martins, S. Ricz, J. Viefhaus et al., Phys. Rev. Lett. 114, 013002 (2015)

    Article  ADS  Google Scholar 

  5. Y. Hikosaka, T. Kaneyasu, P. Lablanquie, F. Penent, E. Shigemasa, K. Ito, Phys. Rev. A 92, 033413 (2015)

    Article  ADS  Google Scholar 

  6. A. Kivimäki, S. Heinäsmäki, M. Jurvansuu, S. Alitalo, E. Nõmmiste, H. Aksela, S. Aksela, J. Electron Spectrosc. Relat. Phenom. 114–116, 49 (2001), Proceedings of the Eight International Conference on Electronic Spectroscopy and Structure

    Article  Google Scholar 

  7. E. Andersson, S. Fritzsche, P. Linusson, L. Hedin, J.H.D. Eland, J.E. Rubensson, L. Karlsson, R. Feifel, Phys. Rev. A 82, 043418 (2010)

    Article  ADS  Google Scholar 

  8. S. Schippers, A. Borovik Jr., T. Buhr, J. Hellhund, K. Holste, A.L.D. Kilcoyne, S. Klumpp, M. Martins, A. Müller, S. Ricz et al., J. Phys. B: At. Mol. Opt. Phys. 48, 144003 (2015)

    Article  ADS  Google Scholar 

  9. I.P. Grant, Relativistic quantum theory of atoms and molecules: theory and computation (Springer Science & Business Media, 2007), Vol. 40

  10. P. Jönsson, X. He, C.F. Fischer, I. Grant, Comput. Phys. Commun. 177, 597 (2007)

    Article  ADS  Google Scholar 

  11. S. Fritzsche, Comput. Phys. Commun. 183, 1525 (2012)

    Article  ADS  Google Scholar 

  12. J. Andersson, R. Beerwerth, S. Fritzsche, R. Feifel et al., Phys. Rev. A 96, 012505 (2017)

    Article  ADS  Google Scholar 

  13. G. Goldsztejn, T. Marchenko, R. Püttner, L. Journel, R. Guillemin, S. Carniato, P. Selles, O. Travnikova, D. Céolin, A.F. Lago et al., Phys. Rev. Lett. 117, 133001 (2016)

    Article  ADS  Google Scholar 

  14. C.A. Nicolaides, D.R. Beck, Chem. Phys. Lett. 36, 79 (1975)

    Article  ADS  Google Scholar 

  15. J. Olsen, M. Godefroid, P. Jönsson, P. Malmqvist, C. Fischer, Phys. Rev. E 52, 4499 (1995)

    Article  ADS  Google Scholar 

  16. P.O. Löwdin, Phys. Rev. 97, 1474 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Theodorakopoulos, I.D. Petsalakis, C.A. Nicolaides, Int. J. Quantum Chem. Symp. 29, 399 (1986)

    Article  Google Scholar 

  18. C.A. Nicolaides, Int. J. Quantum Chem. Symp. 111, 3347 (2011)

    Article  Google Scholar 

  19. S. Schippers, R. Beerwerth, L. Abrok, S. Bari, T. Buhr, M. Martins, S. Ricz, J. Viefhaus, S. Fritzsche, A. Müller, Phys. Rev. A 94, 041401 (2016)

    Article  ADS  Google Scholar 

  20. P. Linusson, S. Fritzsche, J.H.D. Eland, L. Hedin, L. Karlsson, R. Feifel, Phys. Rev. A 83, 023424 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randolf Beerwerth.

Additional information

Contribution to the Topical Issue “Atomic and Molecular Data and their Applications”, edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beerwerth, R., Fritzsche, S. MCDF calculations of Auger cascade processes. Eur. Phys. J. D 71, 253 (2017). https://doi.org/10.1140/epjd/e2017-80064-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80064-3

Navigation