Skip to main content
Log in

Electronic energy loss of protons and deuterons in multi-walled carbon nanotubes

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Results of measurements of electronic energy loss for few keV protons and deuterons interacting with multi-walled carbon nanotubes are presented. Analyses of the energy loss distributions, for both type of ions, show a particular shape which is due to the cylindrical geometry of the nanotubes. These distributions can be explained in detail by a Monte Carlo simulation program that includes elastic and inelastic processes and the geometrical properties of the nanotubes. The electronic energy loss values obtained from this study are proportional to the ion velocity, but are lower than the corresponding values for amorphous carbon. This indicates that the ion-nanotube interaction is affected by the electronic and crystalline structure of the nanotubes. Comparisons with experimental values for different types of C targets and with recent theoretical calculations were also done.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.Y. Lee, C.Y. Shin, S.J. Yoon, H.Y. Lee, W. Lee, N.K. Shrestha, J.K. Lee, S.H. Han, Sci. Rep. 4, 3930 (2014)

    Article  ADS  Google Scholar 

  2. E.V. Santiago, S.H. López, M.A. Camacho López, D.R. Contreras, R. Farías-Mancilla, S.G. Flores-Gallardo, Opt. Laser Technol. 84, 53 (2016)

    Article  ADS  Google Scholar 

  3. C.P. Firme, P.R. Bandaru, Nanomedicine 6, 245 (2010)

    Article  Google Scholar 

  4. H. He, L.A. Pham-Huy, P. Dramou, D. Xiao, P. Zuo, C. Pham-Huy, Biomed Res. Int. 2013, 578290 (2013)

    Google Scholar 

  5. S. Pramanik, R. Konwarh, N. Barua, A.K. Buragohain, N. Karak, Biomater. Sci. 2, 192 (2014)

    Article  Google Scholar 

  6. Z.L. Mišković, J. Phys. Conf. Ser. 133, 012011 (2008)

    Article  Google Scholar 

  7. W.K. Hong, C. Lee, D. Nepal, K.E. Geckeler, K. Shin, T. Lee, Nanotechnology 17, 5675 (2006)

    Article  ADS  Google Scholar 

  8. B. Khare, M. Meyyappan, M.H. Moore, P. Wilhite, H. Imanaka, B. Chen, Nano Lett. 3, 643 (2003)

    Article  ADS  Google Scholar 

  9. V.A. Basiuk, K. Kobayashi, T. Kaneko, Y. Negishi, E.V. Basiuk, J.M. Saniger-Blesa, Nano Lett. 2, 789 (2002)

    Article  ADS  Google Scholar 

  10. P.J. Boul, K. Turner, J. Li, M.X. Pulikkathara, R.C. Dwivedi, E.D. Sosa, Y. Lu, O.V. Kuznetsov, P. Moloney, R. Wilkins, M.J. O’Rourke, V.N. Khabashesku, S. Arepalli, L. Yowell, J. Phys. Chem. C 113, 14467 (2009)

    Article  Google Scholar 

  11. A.V. Krasheninnikov, F. Banhart, Nat. Mater. 6, 723 (2007)

    Article  ADS  Google Scholar 

  12. J.E. Valdés, C. Celedón, R. Segura, I. Abril, R. Garcia-Molina, C.D. Denton, N.R. Arista, P. Vargas, Carbon 52, 137 (2013)

    Article  Google Scholar 

  13. C. Celedón, E.A. Sánchez, M.S. Moreno, N.R. Arista, J.D. Uribe, M. Mery, J.E. Valdés, P. Vargas, Phys. Rev. A 88, 012903 (2013)

    Article  ADS  Google Scholar 

  14. R. Lavin, J.C. Denardin, J. Escrig, D. Altbir, A. Cortes, H. Gomez, J. Appl. Phys. 106, 103903 (2009)

    Article  ADS  Google Scholar 

  15. A. Cortés, R. Lavín, J.C. Denardin, R.E. Marotti, E.A. Dalchiele, P. Valdivia, H. Gómez, J. Nanosci. Nanotechnol. 11, 3899 (2011)

    Article  Google Scholar 

  16. D.K. Singh, P. Iyer, P. Giri, Diam. Relat. Mater. 19, 1281 (2010)

    Article  ADS  Google Scholar 

  17. J. Eckardt, G. Lantschner, M. Jakas, V. Ponce, Nucl. Instrum. Methods Phys. Res. B 2, 168 (1984)

    Article  ADS  Google Scholar 

  18. J.E. Valdés, G. Tamayo, G. Lantschner, J. Eckardt, N. Arista, Nucl. Instrum. Methods Phys. Res. B 73, 313 (1993)

    Article  ADS  Google Scholar 

  19. P. Echenique, R. Nieminen, R. Ritchie, Solid State Commun. 37, 779 (1981)

    Article  ADS  Google Scholar 

  20. M. Puska, R. Nieminen, Phys. Rev. B 27, 6121 (1983)

    Article  ADS  Google Scholar 

  21. D. Isaacson, Compilation of r s values (Tech. rep., New York University, 1975)

  22. P.M. Ajayan, S. Iijima, T. Ichihashi, Phys. Rev. B 47, 6859 (1993)

    Article  ADS  Google Scholar 

  23. L.A. Bursill, P.A. Stadelmann, J.L. Peng, S. Prawer, Phys. Rev. B 49, 2882 (1994)

    Article  ADS  Google Scholar 

  24. M. Kociak, L. Henrard, O. Stéphan, K. Suenaga, C. Colliex, Phys. Rev. B 61, 13936 (2000)

    Article  ADS  Google Scholar 

  25. A. Seepujak, U. Bangert, A.J. Harvey, P.M.F.J. Costa, M.L.H. Green, Phys. Rev. B 74, 075402 (2006)

    Article  ADS  Google Scholar 

  26. M. Upton, R. Klie, J. Hill, T. Gog, D. Casa, W. Ku, Y. Zhu, M. Sfeir, J. Misewich, G. Eres, D. Lowndes, Carbon 47, 162 (2009)

    Article  Google Scholar 

  27. W. Möller, G. Pospiech, G. Schrieder, Nucl. Instrum. Methods 130, 265 (1975)

    Article  ADS  Google Scholar 

  28. M. Famá, J. Eckardt, G. Lantschner, N. Arista, Phys. Rev. A 62, 062901 (2000)

    Article  ADS  Google Scholar 

  29. M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-Solid Interactions (Cambridge University Press, 1996)

  30. E.D. Cantero, G.H. Lantschner, N.R. Arista, Eur. Phys. J. D 65, 397 (2011)

    Article  ADS  Google Scholar 

  31. A. Ojanperä, A.V. Krasheninnikov, M. Puska, Phys. Rev. B 89, 035120 (2014)

    Article  ADS  Google Scholar 

  32. J.D. Pearce, J. Appl. Phys. 52, 5056 (1981)

    Article  ADS  Google Scholar 

  33. S.D. Softky, Phys. Rev. 123, 1685 (1961)

    Article  ADS  Google Scholar 

  34. N. Sakamoto, H. Ogawa, N. Shiomi-Tsuda, Nucl. Instrum. Methods Phys. Res. B 115, 84 (1996)

    Article  ADS  Google Scholar 

  35. W. Käferböck, W. Rössler, V. Necas, P. Bauer, M. Peñalba, E. Zarate, A. Arnau, Phys. Rev. B 55, 13275 (1997)

    Article  ADS  Google Scholar 

  36. P. de Vera, I. Abril, R. Garcia-Molina, Appl. Radiat. Isot. 83, 122 (2014)

    Article  Google Scholar 

  37. J.F. Ziegler, Nucl. Instrum. Methods Phys. Res. B 219-220, 1027 (2004)

    Article  ADS  Google Scholar 

  38. E.P. Arkipov, Y.V. Gott, Soviet Phys. J. Exp. Theor. Phys. 29, 614 (1969)

    ADS  Google Scholar 

  39. S.H. Overbury, P.F. Dittner, S. Datz, R.S. Thoe, Radiat. Eff. Defects Solids 41, 219 (1979)

    Article  Google Scholar 

  40. H.H. Andersen, A. Csete, T. Ichioka, H. Knudsen, S.P. Møller, U.I. Uggerhøj, Nucl. Instrum. Methods Phys. Res. B 194, 217 (2002)

    Article  ADS  Google Scholar 

  41. J.E. Valdés, G. Tamayo, G. Lantschner, J. Eckardt, N. Arista, Nucl. Instrum. Methods Phys. Res. B 73, 313 (1993)

    Article  ADS  Google Scholar 

  42. E. Cantero, G. Lantschner, J. Eckardt, N. Arista, Phys. Rev. A 80, 032904 (2009)

    Article  ADS  Google Scholar 

  43. S. Markin, D. Primetzhofer, M. Spitz, P. Bauer, Phys. Rev. B 80, 205105 (2009)

    Article  ADS  Google Scholar 

  44. D. Goebl, D. Roth, P. Bauer, Phys. Rev. A 062903, 1 (2013)

    Google Scholar 

  45. C.E. Celedón, E.A. Sánchez, L. Salazar Alarcón, J. Guimpel, A. Cortés, P. Vargas, Nucl. Instrum. Methods Phys. Res. B 360, 103 (2015)

    Article  ADS  Google Scholar 

  46. S. Bubin, B. Wang, S. Pantelides, K. Varga, Phys. Rev. B 85, 235435 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Celedón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celedón, C.E., Cortés, A., Sánchez, E.A. et al. Electronic energy loss of protons and deuterons in multi-walled carbon nanotubes. Eur. Phys. J. D 71, 64 (2017). https://doi.org/10.1140/epjd/e2017-70408-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70408-4

Keywords

Navigation