Skip to main content
Log in

Electron-induced ionization and dissociative ionization of iron pentacarbonyl molecules

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Electron ionization (EI) and dissociative ionization (DI) of Iron pentacarbonyl molecule (Fe(CO)5) was studied using a crossed molecular and electron beam mass spectrometry technique. Positive ions FeO(CO)+, FeC(CO)2+ and CO+ of Fe(CO)5 were detected for the first time. We have determined the experimental appearance energies of positive ions, the thresholds for dissociative reactions, the experimental bond dissociation energies for (CO) n Fe+-CO bond breaks (for n = 4,..., 0) and their average value for Fe-C bond energy 1.25 eV in Fe(CO) +5 . We have performed extensive density functional theory (DFT) studies of the ground states of neutral molecule and fragments 1A′1 Fe(CO)5, 3B1 Fe(CO)4, 3A1 Fe(CO)3, 3g Fe(CO)2, 3 ∑FeCO as well as positive ions 2A1 Fe(CO) +5 , 4A1 Fe(CO) +4 , 4A1 Fe(CO) +3 , 4 g Fe(CO) +2 and 4∑ FeCO+. The structures and energies of the states have beendetermined and the calculated bond dissociation energies (BDEs) were compared with present experiments as well as with previous works.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.G. Christophorou, J.K. Olthoff, Appl. Surf. Sci. 192, 309 (2002)

    Article  ADS  Google Scholar 

  2. C.R. Arumainayagam, H.L. Lee, R.B. Nelson, D.R. Haines, R.P. Gunawardane, Surf. Sci. Rep. 65, 1 (2010)

    Article  ADS  Google Scholar 

  3. I. Utke, P. Hoffmann, J. Melngailis, J. Vacuum Sci. Technol. B 26, 1197 (2008)

    Article  ADS  Google Scholar 

  4. J.D. Wunk, S.G. Rosenberg, J.M. Gorham, W.F. van Dorp, C.W. Hagen, D.H. Feairbrother, Surf. Sci. Rep. 607, 251 (2011)

    Google Scholar 

  5. S. Engmann, M. Stano, Š. Matejčík, O. Ingolfsson, Angew. Chem. Int. Ed. 50, 9475 (2011)

    Article  Google Scholar 

  6. S. Engmann, M. Stano, P. Papp, M.J. Brunger, Š. Matejčík, O. Ingólfsson, J. Chem. Phys. 138, 044305 (2013)

    Article  ADS  Google Scholar 

  7. P. Papp, S. Engmann, M. Kučera, M. Stano, Š. Matejčík, O. Ingólfsson, Int. J. Mass Spectrom. 356, 24 (2013)

    Article  ADS  Google Scholar 

  8. J. Orszagh, M. Danko, A. Ribar, Š. Matejıč´k, Nucl. Instrum. Meth. B 279, 76 (2012)

    Article  ADS  Google Scholar 

  9. M. Danko, J. Orszagh, M. Ďurian, J. Kočíšek, M. Daxner, S. Zöttl, J.B. Maljković, J. Fedor, P. Scheier, S. Denifl, Š. Matejčík, J. Phys B 46, 045203 (2013)

    Article  ADS  Google Scholar 

  10. R.E. Winters, R.W. Kiser, Inorg. Chem. 3, 4 (1964)

    Article  Google Scholar 

  11. R.E. Winters, J.H. Collins, J. Phys. Chem. 70, 2057 (1966)

    Article  Google Scholar 

  12. R.E. Winters, R.W. Kiser, J. Chem. Phys. 44, 1964 (1966)

    Article  ADS  Google Scholar 

  13. A. Foffani, S. Pignataro, B. Cantone, F. Grasso, Z. Phys. Chem. (Frankfurt) 45, 78 (1965)

    Article  Google Scholar 

  14. D.R. Bidinosti, N.S. McIntyre, Can. J. Chem. 45, 641 (1967)

    Article  Google Scholar 

  15. G.A. Junk, H.J. Svec, Z. Naturforsch. B 23, 1 (1968)

    Article  Google Scholar 

  16. P.J. Clements, F.R. Sale, Metal. Trans. B 7, 171 (1976)

    Article  Google Scholar 

  17. B.R. Conard, R. Sridhar, Can. J. Chem. 56, 2 (1978)

    Article  Google Scholar 

  18. R.N. Compton, J.A.D. Stockdale, Int. J. Mass Spectrom. Ion Phys. 22, 47 (1976)

    Article  Google Scholar 

  19. L.S. Sunderlin, D. Wang, R.R. Squires, J. Am. Chem. Soc. 114, 2788 (1992)

    Article  Google Scholar 

  20. M. Stano, Š. Matejčík, J.D. Skalny, T.D. Märk, J. Phys. B 36, 261 (2003)

    Article  ADS  Google Scholar 

  21. S.G. Lias, Ion energetics data, NIST Chemistry WebBook, NIST Standard Reference Database Number 69. http://webbook.nist.gov/chemistry/

  22. G.H. Wannier, Phys. Rev. 90, 817 (1953)

    Article  ADS  MATH  Google Scholar 

  23. G. 03, R.C. 02, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03 (Gaussian, Inc., Wallingford CT, 2004)

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  25. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

    Article  ADS  Google Scholar 

  26. M. Diedenhofen, T. Wagener, G. Frenking, The accuracy of quantum chemical methods for the calculation of transition metal compounds, in: Computational Organometallic Chemistry, edited by T.R. Cundari (Marcel Decker, Inc., New York, 2001), pp. 69–121

  27. L.F. Pasteka, T. Rajsky, M. Urban, J. Phys. Chem. A 117, 4472 (2013)

    Article  Google Scholar 

  28. D. Rappoport, F. Furche, J. Chem. Phys. 133, 134105 (2010)

    Article  ADS  Google Scholar 

  29. O. González-Blanco, V. Branchadell, J. Chem. Phys. 110, 778 (1999)

    Article  ADS  Google Scholar 

  30. A. Ricca, C.W. Bauschlicher Jr., J. Phys. Chem.-Us 98, 12899 (1994)

    Article  Google Scholar 

  31. D. Braga, F. Grepioni, A.G. Orpen, Organometallics 12, 1481 (1993)

    Article  Google Scholar 

  32. B. Beagley, D.G. Schmidling, J. Mol. Struct. 22, 466 (1974)

    Article  ADS  Google Scholar 

  33. O. Rubner, V. Engel, M.R. Hachey, C. Daniel, Chem. Phys. Lett. 302, 489 (1999)

    Article  ADS  Google Scholar 

  34. S. Pignataro, A. Foffani, F. Grasso, B. Cantone, Z. Phys. Chem. 47, 106 (1965)

    Article  Google Scholar 

  35. K.E. Lewis, D.M. Golden, G.P. Smith, J. Am. Chem. Soc. 106, 3905 (1984)

    Article  Google Scholar 

  36. M. Erdmann, O. Rubner, Z. Shen, V. Engel, Chem. Phys. Lett. 341, 338 (2001)

    Article  ADS  Google Scholar 

  37. P.C. Engelking, W.C. Lineberger, J. Am. Chem. Soc. 101, 5569 (1979)

    Article  Google Scholar 

  38. E.E. Siefert, R.J. Angelici, Organometallic Chem. 8, 374 (1967)

    Article  Google Scholar 

  39. S. Pignataro, F.P. Losing, J. Organometallic Chem. 11, 571 (1968)

    Article  Google Scholar 

  40. B.K. Venkataraman, G. Bandukwalla, Z. Zhang, M.J. Vernon, Chem. Phys. 90, 5510 (1989)

    ADS  Google Scholar 

  41. L.A. Barnes, M. Rosi, C.W. Bauschlicher, J. Chem. Phys. 94, 2031 (1991)

    Article  ADS  Google Scholar 

  42. T. Ziegler, V. Tschinke, C. Ursenbach, J. Am. Chem. Soc. 109, 4825 (1987)

    Article  Google Scholar 

  43. P.W. Vilalta, D.G. Leopold, J. Chem. Phys. 98, 7730 (1993)

    Article  ADS  Google Scholar 

  44. K. Tanaka, K. Sakaguchi, T. Tanaka, J. Chem. Phys. 106, 2118 (1997)

    Article  ADS  Google Scholar 

  45. K. Tanaka, M. Shirasaka, T. Tanaka, J. Chem. Phys. 106, 6820 (1997)

    Article  ADS  Google Scholar 

  46. R.H. Schultz, K.C. Crellin, P.B. Armentrout, J. Am. Chem. Soc. 113, 8590 (1991)

    Article  Google Scholar 

  47. K. Norwood, A. Ali, G.D. Flesch, C.Y. Ng, J. Am. Chem. Soc. 112, 7502 (1990)

    Article  Google Scholar 

  48. G. Distefano, J. Res. NBS A 74, 7 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Papp.

Additional information

Contribution to the Topical Issue “Elementary Processes with Atoms and Molecules in Isolated and Aggregated States” edited by Friedrich Aumayr, Bratislav Marinkovic, Štefan Matejčík, John Tanis and Kurt H. Becker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacko, M., Papp, P., Wnorowski, K. et al. Electron-induced ionization and dissociative ionization of iron pentacarbonyl molecules. Eur. Phys. J. D 69, 84 (2015). https://doi.org/10.1140/epjd/e2015-50721-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-50721-8

Keywords

Navigation