Skip to main content
Log in

Cross sections and transport of O in H2O vapour at low pressures

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The transport properties of O ions in water vapour drifting in DC fields were obtained by using the Monte Carlo simulation technique with the scattering cross section sets assessed on the basis of Denpoh and Nanbu’s technique and available experimental data. A swarm method is applied to determine recommended cross section set. For the first time in this work we present the transport parameters for the conditions of low to moderate reduced electric fields E/N (N is gas density) accounting for the effect of non-conservative collisions. The data are applicable in the limit of low pressures where cluster formation does not affect the transport or may be applied at higher pressures together with a model of cluster formation kinetics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.R. Stalder, G. Nersisyan, W.G. Graham, J. Phys. D 39, 3457 (2006)

    Article  ADS  Google Scholar 

  2. T. Hagino, H. Kondo, K. Ishikawa, H. Kano, M. Sekine, M. Hori, Appl. Phys. Express 5, 035101 (2012)

    Article  ADS  Google Scholar 

  3. M. Laroussi, Plasma Processes Polym. 2, 391 (2005)

    Article  Google Scholar 

  4. S. Lazović, N. Puač, M. Miletić, D. Pavlica, M. Jovanović, D. Bugarski, S. Mojsilović, D. Maletić, G. Malović,P. Milenković, Z.Lj. Petrović, New J. Phys. 12, 083037 (2010)

    Article  ADS  Google Scholar 

  5. K. Kutasi, J. Loureiro, J. Phys. D 40, 5612 (2007)

    Article  ADS  Google Scholar 

  6. P. Bruggeman, D. Schram, M.Á. González, R. Rego, M.G. Kong, C. Leys, Plasma Sources Sci. Technol. 18, 025017 (2009)

    Article  ADS  Google Scholar 

  7. I. Marinov, O. Guaitella, A. Rousseau, S.M. Starikovskaia, Plasma Sources Sci. Technol. 22, 042001 (2013)

    Article  ADS  Google Scholar 

  8. A. Starikovskiy, Plasma Sources Sci. Technol. 22, 012001 (2013)

    Article  ADS  Google Scholar 

  9. T. Murakami, K. Niemi, T. Gans, D. O’Connell, W.G. Graham, Plasma Sources Sci. Technol. 22, 015003 (2013)

    Article  ADS  Google Scholar 

  10. W. Van Gaens, A. Bogaerts, J. Phys. D 46, 275201 (2013)

    Article  Google Scholar 

  11. P. Bruggeman, C. Leys, J. Phys. D 42, 053001 (2009)

    Article  ADS  Google Scholar 

  12. J.D. Skalny, J. Orszagh, N.J. Mason, J.A. Rees, Y. Aranda-Gonzalvo, T.D. Whitmore, Int. J. Mass Spectrom. 272, 12 (2008)

    Article  ADS  Google Scholar 

  13. G. Ruíz-Vargas, M. Yousfi, J. de Urquijo, J. Phys. D 43, 455201 (2010)

    Article  ADS  Google Scholar 

  14. Y. Itikawa, N. Mason, J. Phys. Chem. Ref. Data 34, 1 (2005)

    Article  ADS  Google Scholar 

  15. R.E. Robson, R.D. White, K.F. Ness, J. Chem. Phys. 134, 064319 (2011)

    Article  ADS  Google Scholar 

  16. R.D. White, W. Tattersall, G. Boyle, R.E. Robson, S. Dujko, Z.Lj. Petrović, A. Banković, M.J. Brunger, J.P. Sullivan, S.J. Buckman, G. Garcia, Appl. Radiat. Isotopes 83, 77 (2014)

    Article  Google Scholar 

  17. J. de Urquijo, E. Basurto, A.M. Juarez, K.F. Ness, R.E. Robson, M.J. Brunger, R.D. White, J. Chem. Phys. 141, 014308 (2014)

    Article  ADS  Google Scholar 

  18. N. Škoro, D. Marić, G. Malović, W.G. Graham, Z.Lj. Petrović, Phys. Rev. E 84, 055401(R) (2011)

    ADS  Google Scholar 

  19. M. Radmilović-Radenović, B. Radenović, Ž. Nikitović, Š. Matejčik, M. Klas, Nucl. Instrum. Methods Phys. Res. B 279, 103 (2012)

    Article  ADS  Google Scholar 

  20. Z. Ristivojević, Z.Lj. Petrović, Plasma Sources Sci. Technol. 21, 035001 (2012)

    Article  ADS  Google Scholar 

  21. Z.Lj. Petrović, Z.M. Raspopović, V.D. Stojanović, J.V. Jovanović, G. Malović, T. Makabe, J. de Urquijo, Appl. Surf. Sci. 253, 6619 (2007)

    Article  ADS  Google Scholar 

  22. J. de Urquijo, J.V. Jovanović, A. Bekstein, V. Stojanović, Z.Lj. Petrović, Plasma Sources Sci. Technol. 22, 025004 (2013)

    Article  ADS  Google Scholar 

  23. K. Denpoh, K. Nanbu, J. Vac. Sci. Technol. A 16, 1201 (1998)

    Article  ADS  Google Scholar 

  24. J.B. Hasted, R.A. Smith, Proc. Roy. Soc. London A 235, 349 (1956)

    Article  ADS  Google Scholar 

  25. C. Lifshitz, J. Phys. Chem. 86, 3634 (1982)

    Article  Google Scholar 

  26. F.C. Fehsenfeld, E.E. Ferguson, J. Chem. Phys. 61, 3181 (1974)

    Article  ADS  Google Scholar 

  27. D. Vogt, Int. J. Mass. Spectrom. Ion Phys. 3, 81 (1969)

    Article  Google Scholar 

  28. V. Stojanović, Z. Raspopović, D. Marić, Z.Lj. Petrović, Contributed Papers, 27th SPIG, Belgrade, August 26–29, 2014, p. 142

  29. J.V. Dugan, J.L. Magee, J. Chem. Phys. 47, 3103 (1967)

    Article  ADS  Google Scholar 

  30. D.C. Clary, Chem. Phys. Lett. 232, 267 (1995)

    Article  ADS  Google Scholar 

  31. UMIST RATE12 astrochemistry.net, http://udfa.ajmarkwick.net/

  32. J.A. de Gouw, M. Krishnamurthy, S.R. Leone, J. Chem. Phys. 106, 5937 (1997)

    Article  ADS  Google Scholar 

  33. Z.Lj. Petrović, S. Dujko, D. Marić, G. Malović, Ž. Nikitović, O. Šašić, J. Jovanović, V. Stojanović, M. Radmilović-Radenović, J. Phys. D 42, 194002 (2009)

    Article  ADS  Google Scholar 

  34. R.E. Robson, Aust. J. Phys. 44, 685 (1991)

    Article  ADS  Google Scholar 

  35. S. Dujko, A.H. Markosyan, R.D. White, U. Ebert, J. Phys. D 46, 475202 (2013)

    Article  ADS  Google Scholar 

  36. J. de Urquijo, A. Bekstein, G. Ruiz-Vargas, F.J. Gordillo-Vázquez, J. Phys. D 46, 035201 (2013)

    Article  ADS  Google Scholar 

  37. R.D. White, M.J. Brunger, N.A. Garland, R.E. Robson, K.F. Ness, G. Garcia, J. de Urquijo, S. Dujko, Z.Lj. Petrović, Eur. Phys. J. D 68, 125 (2014)

    Article  ADS  Google Scholar 

  38. D. Marić, M. Savić, J. Sivoš, N. Škoro, M. Radmilović-Radjenović, G. Malović, Z.Lj. Petrović, Eur. Phys. J. D 68, 155 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Marić.

Additional information

Contribution to the Topical Issue “Elementary Processes with Atoms and Molecules in Isolated and Aggregated States”, edited by Friedrich Aumayr, Bratislav Marinkovic, Stefan Matejcik, John Tanis and Kurt H. Becker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojanović, V., Raspopović, Z., Marić, D. et al. Cross sections and transport of O in H2O vapour at low pressures. Eur. Phys. J. D 69, 63 (2015). https://doi.org/10.1140/epjd/e2015-50720-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-50720-9

Keywords

Navigation