Skip to main content
Log in

Vlasov simulation of ion acceleration by an intense laser beam normally incident on a thin target

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We use an Eulerian Vlasov code to study the radiation pressure acceleration of ions and the formation of plasma jets when a high-intensity circularly polarized laser beam is normally incident on a thin target. The code solves the one-dimensional (1D) relativistic Vlasov-Maxwell equations for both electrons and ions. We consider a deuterium plasma with a density n = 25n cr (n cr is the critical density, i.e. the cutoff density for the laser beam propagation). In the case we present, the target is sufficiently thin that a fraction of the incident laser beam is transmitted through it. Along with this, we observe first a leak or ejection of electrons in the forward direction from the back of the target, which is followed by the formation and ejection of a neutral plasma jet (a regime called “leaky light sail radiation pressure acceleration”). The Vlasov code allows to follow the evolution of the system, with an accurate representation of the phase-space structures of the distribution functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kar et al., Phys. Rev. Lett. 100, 225004 (2008)

    Article  ADS  Google Scholar 

  2. A. Henig et al., Phys. Rev. Lett. 103, 245003 (2009)

    Article  ADS  Google Scholar 

  3. R. Prasad et al., Appl. Phys. Lett. 99, 121504 (2011)

    Article  ADS  Google Scholar 

  4. M. Shoucri, Commun. Comput. Phys. 4, 703 (2008)

    Google Scholar 

  5. M. Shoucri, 20th International Conference on Numerical Simulation of Plasmas, Austin, TX, Oct 10-12, 2007

  6. M. Shoucri, Comput. Sci. Discovery 5, 014005 (2012)

    Article  ADS  Google Scholar 

  7. M. Shoucri, B. Afeyan, Laser Part. Beams 28, 129 (2010)

    Article  ADS  Google Scholar 

  8. M. Shoucri, Eulerian Codes for the Numerical Solution of the Kinetic Equations of Plasmas, Physics Research and Technology (Nova Science Publishers, Inc., 2010)

  9. A. Macchi, F. Cattani, T.V. Liseykina, F. Cornolti, Phys. Rev. Lett. 94, 165003 (2005)

    Article  ADS  Google Scholar 

  10. T.V. Liseikina, A. Macchi, Appl. Phys. Lett. 91, 171502 (2007)

    Article  ADS  Google Scholar 

  11. A.P.L. Robinson, P. Gibbon, M. Zepf, S. Kar, R.G. Evans, C. Bellei, Plasma Phys. Control. Fusion 51, 024004 (2009)

    Article  ADS  Google Scholar 

  12. T. Schlegel, N. Naumova, V.T. Tikhonchuk, C. Labaune, I.V. Sokolov, G. Mourou, Phys. Plasmas 16, 083103 (2009)

    Article  ADS  Google Scholar 

  13. X. Zhang, B. Shen, X. Li, Z. Jin, F. Wang, M. Wen, Phys. Plasmas 14, 123108 (2007)

    Article  ADS  Google Scholar 

  14. A.P.L. Robinson, M. Zepf, S. Kar, R.G. Evans, C. Bellei, New J. Phys. 10, 013021 (2008)

    Article  ADS  Google Scholar 

  15. O. Klimo, J. Psikal, J. Limpouch, V.T. Tikhonchuk, Phys. Rev. ST Accel. Beams 11, 031301 (2008)

    Article  ADS  Google Scholar 

  16. X.Q. Yan, C. Lin, Z.M. Sheng, Z.Y. Guo, B.C. Liu, Y.R. Lu, J.X. Fang, J.E. Chen, Phys. Rev. Lett. 100, 135003 (2008)

    Article  ADS  Google Scholar 

  17. T.V. Liseykina, M. Borghesi, A. Macchi, S. Tuveri, Plasma Phys. Control. Fusion 50, 124033 (2008)

    Article  ADS  Google Scholar 

  18. B. Eliasson, C.S. Liu, X. Shao, R.Z. Sagdeev, P.K. Shukla, New J. Phys. 11, 073006 (2009)

    Article  ADS  Google Scholar 

  19. B. Qiao, M. Zepf, M. Borghesi, B. Dromey, M. Geissler, A. Karmakar, P. Gibbon, Phys. Rev. Lett. 105, 155002 (2010)

    Article  ADS  Google Scholar 

  20. B. Qiao, M. Geissler, S. Kar, M. Borghesi, M. Zepf, Plasma Phys. Control. Fusion 53, 124009 (2011)

    Article  ADS  Google Scholar 

  21. A. Macchi, S. Veghini, T.V. Liseykina, F. Pegoraro, New J. Phys. 12, 045013 (2010)

    Article  ADS  Google Scholar 

  22. M. Shoucri, X. Lavocat-Dubuis, J.P. Matte, F. Vidal, Laser Part. Beams 29, 315 (2011)

    Article  ADS  Google Scholar 

  23. M. Shoucri, J.P. Matte, F. Vidal, Laser Part. Beams 31, 613 (2013)

    Article  ADS  Google Scholar 

  24. A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Matte.

Additional information

Contribution to the Topical Issue “Theory and Applications of the Vlasov Equation”, edited by Francesco Pegoraro, Francesco Califano, Giovanni Manfredi and Philip J. Morrison.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoucri, M.M., Matte, JP. & Vidal, F. Vlasov simulation of ion acceleration by an intense laser beam normally incident on a thin target. Eur. Phys. J. D 68, 257 (2014). https://doi.org/10.1140/epjd/e2014-50143-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50143-2

Keywords

Navigation