Skip to main content
Log in

Coherent XUV generation driven by sharp metal tips photoemission

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

It was already experimentally demonstrated that high-energy electrons can be generated using metal nanotips as active non-linear media. In addition, it has been theoretically proven that the high-energy tail of the photoemitted electrons is intrinsically linked to the so-called recollision phenomenon. Through this recollision process it is also possible to convert the energy gained by the laser-emitted electron in the continuum in a coherent XUV photon. This means the emission of harmonic radiation appears to be feasible, although it has not been experimentally demonstrated hitherto. In this paper, we employ a quantum mechanical approach to model the electron dipole moment including both the laser experimental conditions and the bulk matter properties in order to predict it is possible to generate coherent UV and XUV radiation using metal nanotips as sources. Our quantum mechanical results are fully supported by their classical counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. McPherson, G. Gibson, H. Jara, U. Johann, T.S. Luk, I.A. McIntyre, K. Boyer, C.K. Rhodes, J. Opt. Soc. Am. B 4, 595 (1987)

    Article  ADS  Google Scholar 

  2. A. L’Huillier, K.J. Schafer, K.C. Kulander, J. Phys. B 24, 3315 (1991)

    Article  ADS  Google Scholar 

  3. P. Antoine, A. L’Huillier, M. Lewenstein, Phys. Rev. Lett. 77, 1234 (1996)

    Article  ADS  Google Scholar 

  4. A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, Nature 427, 817 (2004)

    Article  ADS  Google Scholar 

  5. S.H. Chew et al., Appl. Phys. Lett. 100, 051904 (2012)

    Article  ADS  Google Scholar 

  6. M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, D. Kim, F. Krausz, U. Kleineberg, New J. Phys. 9, 243 (2007)

    Article  ADS  Google Scholar 

  7. M. Krebs, S. Hädrich, S. Demmler, J. Rothhardt, A. Zaïr, L. Chipperfield, J. Limpert, A. Tünnermann, Nat. Photon. 7, 555 (2013)

    Article  ADS  Google Scholar 

  8. M. Lein, J. Phys. B 43, R135 (2007)

    Article  ADS  Google Scholar 

  9. S. Baker, J.S. Robinson, C.A. Haworth, H. Teng, R.A. Smith, C.C. Chirilă, M. Lein, J.G. Tisch, J.P. Marangos, Science 312, 424 (2006)

    Article  ADS  Google Scholar 

  10. S. Haessler et al., Nat. Phys. 6, 200 (2010)

    Article  Google Scholar 

  11. O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, M.Y. Ivanov, Proc. Natl. Acad. Sci. USA 106, 16556 (2009)

    Article  Google Scholar 

  12. O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, M.Y. Ivanov, Nature (London) 460, 972 (2009)

    Article  ADS  Google Scholar 

  13. Y. Mairesse et al., Science 302, 1540 (2003)

    Article  ADS  Google Scholar 

  14. E.P. Power, A.M. March, F. Catoire, E. Sistrun, K. Krushelnick, P. Agostini, L.F. DiMauro, Nat. Photon. 4, 352 (2010)

    Article  ADS  Google Scholar 

  15. M. Krüger, M. Schenk, P. Hommelhoff, Nature 475, 78 (2011)

    Article  Google Scholar 

  16. S. Zherebtsov et al., Nat. Phys. 7, 656 (2011)

    Article  Google Scholar 

  17. C. Hutchison, R.A. Ganeev, T. Witting, F. Frank, W.A. Okell, J.W.G. Tisch, J.P. Marangos, Opt. Lett. 37, 2064 (2012)

    Article  ADS  Google Scholar 

  18. R.A. Ganeev et al., Phys. Rev. A 85, 015807 (2012)

    Article  ADS  Google Scholar 

  19. M. Krüger, M. Schenk, M. Förster, P. Hommelhoff, J. Phys. B 45, 074006 (2012)

    Article  ADS  Google Scholar 

  20. M. Schenk, M. Krüger, P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010)

    Article  ADS  Google Scholar 

  21. G. Herink, D.R. Solli, M. Gulde, C. Ropers, Nature 483, 190 (2012)

    Article  ADS  Google Scholar 

  22. S.V. Yalunin, M. Gulde, C. Ropers, Phys. Rev. B 84, 195426 (2011)

    Article  ADS  Google Scholar 

  23. M. Krüger, M. Schenk, P. Hommelhoff, G. Watcher, C. Lemell, J. Burgdörfer, New J. Phys. 14, 085019 (2012)

    Article  ADS  Google Scholar 

  24. G. Watcher, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, Phys. Rev. B 86, 085019 (2012)

    Google Scholar 

  25. S.V. Yalunin, G. Herink, D.R. Solli, M. Krüger, P. Hommelhoff, M. Diehn, A. Munk, C. Ropers, Ann. Phys. (Berlin) 525, L12 (2013)

    Article  ADS  Google Scholar 

  26. S. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L.F. DiMauro, D.A. Reis, Nat. Phys. 7, 138 (2011)

    Article  Google Scholar 

  27. S. Ghimire, A.D. DiChiara, E. Sistrunk, G. Ndabashimiye, U.B. Szafruga, A. Mohammad, P. Agostini, L.F. DiMauro, D.A. Reis, Phys. Rev. A 85, 043836 (2012)

    Article  ADS  Google Scholar 

  28. L. Plaja, L. Roso-Franco, Phys. Rev. B 45, 8334 (1992)

    Article  ADS  Google Scholar 

  29. F.H.M. Faisal, J.K. Kamiński, E. Saczuk, Phys. Rev. A 72, 023412 (2005)

    Article  ADS  Google Scholar 

  30. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.-W. Kim, Nature 453, 757 (2008)

    Article  ADS  Google Scholar 

  31. P. Mühlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607 (2005)

    Article  ADS  Google Scholar 

  32. P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Phys. Rev. Lett. 94, 017402 (2005)

    Article  ADS  Google Scholar 

  33. A. Husakou, S.-J. Im, J. Herrmann, Phys. Rev. A 83, 043839 (2011)

    Article  ADS  Google Scholar 

  34. I. Yavuz, E.A. Bleda, Z. Altun, T. Topcu, Phys. Rev. A 85, 013416 (2012)

    Article  ADS  Google Scholar 

  35. M.F. Ciappina, J. Biegert, R. Quidant, M. Lewenstein, Phys. Rev. A 85, 033828 (2012)

    Article  ADS  Google Scholar 

  36. T. Shaaran, M.F. Ciappina, M. Lewenstein, Phys. Rev. A 86, 023408 (2012)

    Article  ADS  Google Scholar 

  37. M.F. Ciappina, S.S. Aćimović, T. Shaaran, J. Biegert, R. Quidant, M. Lewenstein, Opt. Express 20, 26261 (2012)

    Article  ADS  Google Scholar 

  38. T. Shaaran, M.F. Ciappina, M. Lewenstein, Ann. Phys. (Berlin) 525, 97 (2013)

    Article  MATH  ADS  Google Scholar 

  39. B. Fetić, K. Kalajdžić, D.B. Milošević, Ann. Phys. (Berlin) 525, 107 (2013)

    Article  MATH  ADS  Google Scholar 

  40. J.A. Pérez-Hernández, M.F. Ciappina, M. Lewenstein, L. Roso, A. Zaïr, Phys. Rev. Lett. 110, 053001 (2013)

    Article  ADS  Google Scholar 

  41. I. Yavuz, Phys. Rev. A 87, 053815 (2013)

    Article  ADS  Google Scholar 

  42. J. Luo, Y. Li, Z. Wang, Q. Zhang, P. Lu, J. Phys. B 46, 145602 (2013)

    Article  ADS  Google Scholar 

  43. L. Feng, M. Yuan, T. Chu, Phys. Plasmas 20, 122307 (2013)

    Article  ADS  Google Scholar 

  44. M. Sivis, M. Duwe, B. Abel, C. Ropers, Nature 485, E1 (2012)

    Article  ADS  Google Scholar 

  45. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.-W. Kim, Nature 485, E2 (2012)

    Article  Google Scholar 

  46. M. Sivis, M. Duwe, B. Abel, C. Ropers, Nat. Phys. 9, 304 (2013)

    Article  Google Scholar 

  47. F. Süßmann, M.F. Kling, Proc. SPIE 8096, 80961C (2011)

    Article  Google Scholar 

  48. F. Süßmann, M.F. Kling, Phys. Rev. B 84, 121406(R) (2011)

    Article  ADS  Google Scholar 

  49. Y.-Y. Yang et al., Opt. Express 21, 2195 (2013)

    Article  ADS  Google Scholar 

  50. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M.A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006)

    Article  ADS  Google Scholar 

  51. P. Hommelhoff, C. Kealhofer, M.A. Kasevich, Phys. Rev. Lett. 97, 247402 (2006)

    Article  ADS  Google Scholar 

  52. C. Ropers, D.R. Solli, C.P. Schulz, C. Lienau, T. Elsaesser, Phys. Rev. Lett. 98, 043907 (2007)

    Article  ADS  Google Scholar 

  53. B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, H. Batelaan, New J. Phys. 9, 142 (2007)

    Article  ADS  Google Scholar 

  54. H. Yanagisawa, C. Hafner, P. Doná, M. Klöckner, D. Leuenberger, T. Greber, M. Hengsberger, J. Osterwalder, Phys. Rev. Lett. 103, 257603 (2009)

    Article  ADS  Google Scholar 

  55. R. Bormann, M. Gulde, A. Weismann, S.V. Yalunin, C. Ropers, Phys. Rev. Lett. 105, 147601 (2010)

    Article  ADS  Google Scholar 

  56. D.J. Park, B. Piglosiewicz, S. Schmidt, H. Kollmann, M. Mascheck, C. Lienau, Phys. Rev. Lett. 109, 244803 (2012)

    Article  ADS  Google Scholar 

  57. M.F. Ciappina, J.A. Pérez-Hernández, T. Shaaran, M. Lewenstein, M. Krüger, P. Hommelhoff, Phys. Rev. A 89, 013409 (2014)

    Article  ADS  Google Scholar 

  58. M. Protopapas, C.H. Keitel, P.L. Knight, Rep. Prog. Phys. 60, 389 (1997)

    Article  ADS  Google Scholar 

  59. K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 78, 638 (1997)

    Article  ADS  Google Scholar 

  60. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49, 2117 (1994)

    Article  ADS  Google Scholar 

  61. P.B. Corkum, Phys. Rev. Lett 71, 1994 (1993)

    Article  ADS  Google Scholar 

  62. M.F. Ciappina, J.A. Pérez-Hernández, M. Lewenstein, Comput. Phys. Commun. 185, 398 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Ciappina.

Additional information

Contribution to the Topical Issue “X-ray Generation from Ultrafast Lasers”, edited by Germán J. de Valcárcel, Luis Roso and Amelle Zaïr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciappina, M., Pérez-Hernández, J., Shaaran, T. et al. Coherent XUV generation driven by sharp metal tips photoemission. Eur. Phys. J. D 68, 172 (2014). https://doi.org/10.1140/epjd/e2014-50060-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50060-4

Keywords

Navigation