Skip to main content
Log in

Quantum Stirling heat engine and refrigerator with single and coupled spin systems

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study the reversible quantum Stirling cycle with a single spin or two coupled spins as the working substance. With the single spin as the working substance, we find that under certain conditions the reversed cycle of a heat engine is NOT a refrigerator, this feature holds true for a Stirling heat engine with an ion trapped in a shallow potential as its working substance. The efficiency of quantum Stirling heat engine can be higher than the efficiency of the Carnot engine, but the performance coefficient of the quantum Stirling refrigerator is always lower than its classical counterpart. With two coupled spins as the working substance, we find that a heat engine can turn to a refrigerator due to the increasing of the coupling constant, this can be explained by the properties of the isothermal line in the magnetic field-entropy plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born, V. Fork, Z. Phys. 51, 165 (1928)

    Article  ADS  MATH  Google Scholar 

  2. A. Messiah, Quantum Mechanics (Dover, New York, 1999)

  3. T.D. Kieu, Phys. Rev. Lett. 93, 140403 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  4. T.D. Kieu, Eur. Phys. J. D 39, 115 (2006)

    Article  ADS  Google Scholar 

  5. H.T. Quan, Y.X. Liu, C.P. Sun, F. Nori, Phys. Rev. E 76, 031105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. H.T. Quan, Phys. Rev. E 79, 041129 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. P. Perrot, A to Z of Thermodynamics (Oxford University Press, Oxford, 1998)

  8. T. Feldmann, R. Kosloff, Phys. Rev. E 61, 4774 (2000)

    Article  ADS  Google Scholar 

  9. T. Feldmann, R. Kosloff, Phys. Rev. E 68, 016101 (2003)

    Article  ADS  Google Scholar 

  10. T. Feldmann, R. Kosloff, Phys. Rev. E 70, 046110 (2004)

    Article  ADS  Google Scholar 

  11. J.Z. He, J.C. Chen, B. Hua, Phys. Rev. E 65, 036145 (2002)

    Article  ADS  Google Scholar 

  12. C.M. Bender, D.C. Body, B.K. Meister, J. Phys. A 33, 4427 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. J.H. Wang, J.Z. He, X. He, Phys. Rev. E 84, 041127 (2011)

    Article  ADS  Google Scholar 

  14. J.H. Wang, Z.Q. Wu, J.Z. He, Phys. Rev. E 85, 041148 (2012)

    Article  ADS  Google Scholar 

  15. H.T. Quan, P. Zhang, C.P. Sun, Phys. Rev. E 72, 056110 (2005)

    Article  ADS  Google Scholar 

  16. H. Li, J. Zou, W.L. Yu, L. Li, B.M. Xu, B. Shao, Eur. Phys. J. D 67, 134 (2013)

    Article  ADS  Google Scholar 

  17. B.H. Lin, J.C. Chen, Phys. Rev. E 67, 046105 (2003)

    Article  ADS  Google Scholar 

  18. T. Zhang, W.T. Liu, P.X. Chen, C.Z. Li, Phys. Rev. A 75, 062102 (2007)

    Article  ADS  Google Scholar 

  19. G. Thomas, R.S. Johal, Phys. Rev. E 83, 031135 (2011)

    Article  ADS  Google Scholar 

  20. X.L. Huang, L.C. Wang, X.X. Yi, Phys. Rev. E 87, 012144 (2013)

    Article  ADS  Google Scholar 

  21. E. Muñoz, F.J. Peña, Phys. Rev. E 86, 061108 (2012)

    Article  ADS  Google Scholar 

  22. M. Esposito, R. Kawai, C. Van den Broeck, Phys. Rev. E 81, 041106 (2010)

    Article  ADS  Google Scholar 

  23. J. Hoppenau, M. Niemann, A. Engel, Phys. Rev. E 87, 062127 (2013)

    Article  ADS  Google Scholar 

  24. T. Feldmann, R. Kosloff, Phys. Rev. E 85, 051114 (2012)

    Article  ADS  Google Scholar 

  25. H. Wang, Phys. Scr. 87, 055009 (2013)

    Article  ADS  Google Scholar 

  26. C. Van den Broeck, N. Kumar, K. Lindenberg, Phys. Rev. E 708, 210602 (2012)

    Google Scholar 

  27. G. Thomas, R.S. Johal, Phys. Rev. E 85, 041146 (2012)

    Article  ADS  Google Scholar 

  28. H. Yan, H. Guo, Phys. Rev. E 86, 051135 (2012)

    Article  ADS  Google Scholar 

  29. M.J. Henrich, G. Mahler, M. Michel, Phys. Rev. E 75, 051118 (2007)

    Article  ADS  Google Scholar 

  30. F. Tonner, G. Mahler, Phys. Rev. E 72, 066118 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  31. O. Abah, J. Robnagel, G. Jacob, S. Deffner, F. Schmide-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 109, 203006 (2012)

    Article  ADS  Google Scholar 

  32. O. Fialko, D.W. Hallwood, Phys. Rev. Lett. 108, 085303 (2012)

    Article  ADS  Google Scholar 

  33. M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kim, A. Svidzinsky, Proc. Natl. Sci. 108, 15097 (2011)

    Article  ADS  Google Scholar 

  34. S. Rahav, U. Harbola, S. Mukamel, Phys. Rev. A 86, 043843 (2012)

    Article  ADS  Google Scholar 

  35. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  37. M.O. Scully, in Quantum Limits to the Second Law: First International Conference, edited by D.P. Sheehan (AIP Press, Melville, 2002), pp. 83–91

  38. Yu.V. Rostovtsev, Z.E. Sariyianni, M.O. Scully, Laser Phys. 13, 375 (2003)

    Google Scholar 

  39. X.L. Huang, T. Wang, X.X. Yi, Phys. Rev. E 86, 051105 (2012)

    Article  ADS  Google Scholar 

  40. M.O. Scully, Phys. Rev. Lett. 87, 220601 (2001)

    Article  ADS  Google Scholar 

  41. M.O. Scully, Phys. Rev. Lett. 88, 050602 (2002)

    Article  ADS  Google Scholar 

  42. H.T. Quan, Y.D. Wang, Y.X. Liu, C.P. Sun, F. Nori, Phys. Rev. Lett. 97, 180402 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  43. A. Levy, R. Kosloff, Phys. Rev. Lett. 108, 070604 (2012)

    Article  ADS  Google Scholar 

  44. D. Mandal, H.T. Quan, C. Jarzynski, Phys. Rev. Lett. 111, 030602 (2013)

    Article  ADS  Google Scholar 

  45. S. Abe, S. Okuyama, Phys. Rev. E 83, 021121 (2011)

    Article  ADS  Google Scholar 

  46. S. Abe, S. Okuyama, Phys. Rev. E 85, 011104 (2012)

    Article  ADS  Google Scholar 

  47. A. Levy, R. Alicki, R. Kosloff, Phys. Rev. E 85, 061126 (2012).

    Article  ADS  Google Scholar 

  48. S. Hormoz, Phys. Rev. E 87, 022129 (2013)

    Article  ADS  Google Scholar 

  49. S.W. Kim, T. Sagawa, S.E. Liberato, M. Ueda, Phys. Rev. Lett. 106, 070401 (2011)

    Article  ADS  Google Scholar 

  50. C.Y. Cai, H. Dong, C.P. Sun, Phys. Rev. E 85, 031114 (2012)

    Article  ADS  Google Scholar 

  51. Y. Lu, G.L. Long, Phys. Rev. E 85, 011125 (2012)

    Article  ADS  Google Scholar 

  52. H. Li, J. Zou, J.G. Li, B. Shao, L.A. Wu, Ann. Phys. 327, 2955 (2012)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Li Huang or Xue-Xi Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, XL., Niu, XY., Xiu, XM. et al. Quantum Stirling heat engine and refrigerator with single and coupled spin systems. Eur. Phys. J. D 68, 32 (2014). https://doi.org/10.1140/epjd/e2013-40536-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40536-0

Keywords

Navigation