Skip to main content
Log in

Analysis of the quasicontinuum band emitted by highly ionised tungsten atoms in the 4–7 nm range

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Spectra emitted by highly ionized tungsten atoms from magnetically confined plasmas show a common feature: a narrow structured quasi-continuum emission band most prominent in the range 4−7 nm, which accounts for 40−80% of the radiated power. This band has been fairly well explained by unresolved transitions from groups 4d-4p, 4f-4d (Δn = 0) and 5d-4f, 5g-4f and 5p-4d (Δn = 1). In this work we use a Multi-Configuration Dirac-Fock code in Breit self-consistent field mode to compute level energies and transition probabilities for W27+ to W37+ ions contributing to this emission band. Intra-shell correlation was introduced in the calculation for both initial and final states and all dipole and quadrupole radiative transitions have been considered. The wavefunctions in the initial and final states are optimized separately and the resulting non-orthogonality effect is fully taken into account. The importance of some satellite lines was assessed. Together with the ionic distributions obtained by using the FLYCHK application and assuming that the initial states population depends statistically on the temperature we were able to synthesize plasma emission spectrum profiles for several electron temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Klapisch, J.L. Schwob, M. Finkenthal, B.S. Fraenkel, S. Egert, A. Bar-Shalom, C. Breton, C. DeMichelis, M. Mattioli, Phys. Rev. Lett. 41, 403 (1978)

    Article  ADS  Google Scholar 

  2. M. Bitter, K.W. Hill, N.R. Sauthoff, P.C. Efthimion, E. Meservey, W. Roney, S.V. Goeler, R. Horton, M. Goldman, W. Stodiek, Phys. Rev. Lett. 43, 129 (1979)

    Article  ADS  Google Scholar 

  3. E. Kallne, J. Kallne, J.E. Rice, Phys. Rev. Lett. 49, 330 (1982)

    Article  ADS  Google Scholar 

  4. M.C. Martins, J.P. Marques, A.M. Costa, J.P. Santos, F. Parente, S. Schlesser, E.-O.L. Bigot, P. Indelicato, Phys. Rev. A 80, 032501 (2009)

    Article  ADS  Google Scholar 

  5. J.P. Santos, M.C. Martins, A.M. Costa, J.P. Marques, P. Indelicato, F. Parente, Phys. Scr. T144, 014005 (2010)

    Article  ADS  Google Scholar 

  6. T. Pütterich, R. Neu, C. Biedermann, R. Radtke, ASDEX Upgrade Team, J. Phys. B 38, 3071 (2005)

    Article  ADS  Google Scholar 

  7. A.H. Gabriel, C. Jordan, Phys. Lett. A 32, 166 (1970)

    Article  ADS  Google Scholar 

  8. J.C. Gauthier, J.P. Geindre, P. Monier, E. Luckoenig, J.F. Wyart, J. Phys. B 19, L385 (1986)

    Article  ADS  Google Scholar 

  9. D.D. Dietrich, G.A. Chandler, R.J. Fortner, C.J. Hailey, R.E. Stewart, Phys. Rev. Lett. 54, 1008 (1985)

    Article  ADS  Google Scholar 

  10. P.H. Mokler, S. Reusch, A. Warczak, Z. Stachura, T. Kambara, A. Muller, R. Schuch, M. Schulz, Phys. Rev. Lett. 65, 3108 (1990)

    Article  ADS  Google Scholar 

  11. P. Beiersdorfer, A.L. Osterheld, J. Scofield, B. Wargelin, R.E. Marrs, Phys. Rev. Lett. 67, 2272 (1991)

    Article  ADS  Google Scholar 

  12. K.B. Fournier, W.H. Goldstein, M. May, M. Finkenthal, Phys. Rev. A 53, 709 (1996)

    Article  ADS  Google Scholar 

  13. T. Pütterich, R. Neu, R. Dux, A.D. Whiteford, M.G. O’Mullane, the ASDEX Upgrade Team, Plasma Phys. Control. Fusion 50, 085016 (2008)

  14. C. Biedermann, R. Radtke, AIP Conf. Proc. 1125, 107 (2009)

    Article  ADS  Google Scholar 

  15. R. Isler, R. Neidigh, R. Cowan, Phys. Lett. A 63, 295 (1977)

    Article  ADS  Google Scholar 

  16. R. Radtke, C. Biedermann, J.L. Schwob, P. Mandelbaum, R. Doron, Phys. Rev. A 64, 012720 (2001)

    Article  ADS  Google Scholar 

  17. V. Jonauskas, S. Kucas, R. Karazija, J. Phys. B 40, 2179 (2007)

    Article  ADS  Google Scholar 

  18. Y.J. Rhee, D.H. Kwon, Int. J. Mass Spectrom. 271, 45 (2008)

    Article  ADS  Google Scholar 

  19. C.S. Harte, C. Suzuki, T. Kato, H.A. Sakaue, D. Kato, K. Sato, N. Tamura, S. Sudo, R. D’Arcy, E. Sokell, J. White, G. O’Sullivan, J. Phys. B 43, 205004 (2010)

    Article  ADS  Google Scholar 

  20. E. Biémont, C.J. Zeippen, Comments At. Mol. Phys. 33, 29 (1996)

    Google Scholar 

  21. H.-K Chung, M.H. Chen, W.L. Morgan, Yu. Ralchenko, R.W. Lee, High Energy Density Phys. 1, 3 (2005)

    Article  ADS  Google Scholar 

  22. H. Ray, Astrophys. J. 579, 914 (2002)

    Article  ADS  Google Scholar 

  23. J.P. Desclaux, in Methods and Techniques in Computational Chemistry: Small Systems of METTEC, edited by E. Clementi (STEF, Cagliary, 1993), Vol. A, p. 253

  24. J.P. Desclaux, Comput. Phys. Commun. 9, 31 (1975)

    Article  ADS  Google Scholar 

  25. P. Indelicato, J.P. Desclaux, MCDFGME, a multi-configuration Dirac-Fock and general matrix elements program (v.2011), http://dirac.spectro.jussieu.fr/mcdf

  26. I.P. Grant, H.M. Quiney, Adv. At. Mol. Phys. 23, 37 (1988)

    Article  ADS  Google Scholar 

  27. P. Indelicato, Phys. Rev. A 51, 1132 (1995)

    Article  ADS  Google Scholar 

  28. O. Gorceix, P. Indelicato, Phys. Rev. A 37, 1087 (1988)

    Article  ADS  Google Scholar 

  29. E. Lindroth, A.M. Märtensson-Pendrill, Phys. Rev. A 39, 3794 (1989)

    Article  ADS  Google Scholar 

  30. I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  31. G. Audi, A. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  32. A. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (2003)

    Article  ADS  Google Scholar 

  33. P. Indelicato, Phys. Rev. Lett. 77, 3323 (1996)

    Article  ADS  Google Scholar 

  34. P. Indelicato, Hyp. Int. 108, 39 (1997)

    Article  ADS  Google Scholar 

  35. P.O. Löwdin, Phys. Rev. 97, 1474 (1955)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Y. Ishikawa, H.M. Quiney, G.L. Malli, Phys. Rev. A 43, 3270 (1991)

    Article  ADS  Google Scholar 

  37. I.I. Sobel’man, Introduction to the Theory of Atomic, Spectra (Pergamon Press, Oxford, 1972), p. 300

  38. Burning Plasma Diagnostics AIP Conference Proceedings, edited by F.P. Orsitto, G. Gorini, E. Sindoni, M. Tardochi (American Institute of Physics, Melville, New York, 2008), Vol. 988

  39. R.W.P. McWhirter, in Plasma Physics and Nuclear Fusion Research, Chapter 10: Plasma Radiation (Academic Press, London, 1981)

  40. G. Zhuang, R. Behn, I. Klimanov, P. Nikkola, O. Sauter, Plasma Phys. Control. Fusion 47, 1539 (2005)

    Article  ADS  Google Scholar 

  41. T.I. Madeira, Ph.D. thesis, IST-UTL, Lisbon, Portugal, 2009

  42. E. de la Luna, V. Krivenski, G. Giruzzi, C. Gowers, R. Prentice, J.M. Travere, M. Zerbini, Rev. Sci. Instrum. 74, 1414 (2003)

    Article  ADS  Google Scholar 

  43. M. Finkenthal, L.K. Huang, S. Lippmann, H.W. Moos, P. Mandelbaum, J.L. Schwob, M. Klapisch, Phys. Lett. 127, 255 (1988)

    Article  Google Scholar 

  44. K.B. Fournier, W.H. Goldstein, M. May, M. Finkenthal, Phys. Rev. A 53, 709 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Isabel Madeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madeira, T.I., Amorim, P., Parente, F. et al. Analysis of the quasicontinuum band emitted by highly ionised tungsten atoms in the 4–7 nm range. Eur. Phys. J. D 67, 12 (2013). https://doi.org/10.1140/epjd/e2012-30608-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30608-0

Keywords

Navigation