Abstract.
We determine the universal law for fidelity decay in quantum computations of complex dynamics in presence of internal static imperfections in a quantum computer. Our approach is based on random matrix theory applied to quantum computations in presence of imperfections. The theoretical predictions are tested and confirmed in extensive numerical simulations of a quantum algorithm for quantum chaos in the dynamical tent map with up to 18 qubits. The theory developed determines the time scales for reliable quantum computations in absence of the quantum error correction codes. These time scales are related to the Heisenberg time, the Thouless time, and the decay time given by Fermi’s golden rule which are well-known in the context of mesoscopic systems. The comparison is presented for static imperfection effects and random errors in quantum gates. A new convenient method for the quantum computation of the coarse-grained Wigner function is also proposed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
A. Ekert, R. Josza, Rev. Mod. Phys. 68, 733 (1996)
A. Steane, Rep. Prog. Phys. 61, 117 (1998)
M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000)
D.P. Di Vincenzo, Science 270, 255 (1995)
P.W. Shor, in Proc. 35th Annual Symposium on Foundation of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA, 1994), p. 124
L.K. Grover, Phys. Rev. Lett. 79, 325 (1997)
S. Lloyd, Science 273, 1073 (1996)
G. Ortiz, J.E. Gubernatis, E. Knill, R. Laflamme, Phys. Rev. A 64, 22319 (2001)
B.V. Chirikov, F.M. Izrailev, D.L. Shepelyansky, Sov. Scient. Rev. C 2, 209 (1981); Physica D 33, 77 (1988)
F.M. Izrailev, Phys. Rep. 196, 299 (1990)
R. Schack, Phys. Rev. A 57, 1634 (1998)
B. Georgeot, D.L. Shepelyansky, Phys. Rev. Lett. 86, 2890 (2001)
G. Benenti, G. Casati, S. Montangero, D.L. Shepelyansky, Phys. Rev. Lett. 87, 227901 (2001)
A.D. Chepelianskii, D.L. Shepelyansky, Phys. Rev. A 66, 054301 (2002)
A.A. Pomeransky, D.L. Shepelyansky, Phys. Rev. A (to appear), arXiv:quant-ph/0306203
B. Georgeot, D.L. Shepelyansky, Phys. Rev. Lett. 86, 5393 (2001); Phys. Rev. Lett. 88, 219802 (2002)
M. Terraneo, B. Georgeot, D.L. Shepelyansky, Eur. Phys. J. D 22, 127 (2003)
W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)
B. Georgeot, D.L. Shepelyansky, Phys. Rev. E 62, 3504 (2000); Phys. Rev. E 62, 6366 (2000)
V.V. Flambaum, Aust. J. Phys. 53, 489 (2000)
G.P. Berman, F. Borgonovi, F.M. Izrailev, V.I. Tsifrinovich, Phys. Rev. E 64, 056226 (2001)
G. Benenti, G. Casati, D.L. Shepelyansky, Eur. Phys. J. D 17, 265 (2001)
D. Braun, Phys. Rev. A 65, 042317 (2002)
A. Peres, Phys. Rev. A 30, 1610 (1984)
D.L. Shepelyansky, Physica D 8, 208 (1983)
G. Casati, B.V. Chirikov, I. Guarneri, D.L. Shepelyansky, Phys. Rev. Lett. 56, 2437 (1986)
R.A. Jalabert, H.M. Pastawski, Phys. Rev. Lett. 86, 2490 (2001)
P. Jacquod, P.G. Silvestrov, C.W.J. Beenakker, Phys. Rev. E 64, 055203 (2001)
G. Veble, T. Prosen, Phys. Rev. Lett. 92, 034101 (2004)
G. Benenti, G. Casati, Phys. Rev. E 66, 066205 (2002)
T. Prosen, M. Znidaric, J. Phys. A 34, L681 (2001); J. Phys. A 35, 1455 (2002); T. Prosen, T.H. Seligman, M. Znidaric, Prog. Theor. Phys. Supp. 150, 200 (2003)
T. Kottos, D. Cohen, Europhys. Lett. 61, 431 (2003)
N.R. Cerruti, S. Tomsovic, Phys. Rev. Lett. 88, 054103 (2002); J. Phys. A 36, 3451 (2003)
Y. Adamov, I.V. Gornyi, A.D. Mirlin, Phys. Rev. E 67, 056217 (2003)
C. Miguel, J.P. Paz, W.H. Zurek, Phys. Rev. Lett. 78, 3971 (1997)
M. Terraneo, D.L. Shepelyansky, Phys. Rev. Lett. 90, 257902 (2003)
S. Bettelli, arXiv:quant-ph/0310152
F.J. Dyson, J. Math. Phys. 3, 140 (1962)
M.L. Mehta, Random Matrices (Academic, New York, 1991)
T. Guhr, A. Mueller-Groeling, H.A. Weidenmueller, Phys. Rep. 299, 189 (1998)
E. Wigner, Phys. Rev. 40, 749 (1932)
S.-J. Chang, K.-J. Shi, Phys. Rev. A 34, 7 (1986)
L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Nature 414, 883 (2001)
Y.S. Weinstein, S. Lloyd, J. Emerson, D.G. Cory, Phys. Rev. Lett. 89, 157902 (2002)
J. Emerson, Y.S. Weinstein, S. Lloyd, D.G. Cory, Phys. Rev. Lett. 89, 284102 (2002)
B.V. Chirikov, Phys. Rep. 52, 263 (1979)
S. Bullett, Com. Math. Phys. 107, 241 (1986)
V.V. Vecheslavov, Zh. Eksp. Teor. Fiz. 119, 853 (2001), arXiv:nlin.CD/0005048; V.V. Vecheslavov, B.V. Chirikov, Zh. Eksp. Teor. Fiz. 120, 740 (2001), arXiv:nlin.CD/0202017
B.A. Muzykantskii, D.E. Khmelnitskii, Phys. Rev. B 51, 5481 (1995)
A.D. Mirlin, Phys. Rep. 326, 259 (2000)
G. Casati, G. Maspero, D.L. Shepelyansky, Phys. Rev. E 56, R6233 (1997)
D.V. Savin, V.V. Sokolov, Phys. Rev. E 56, R4911 (1997)
K.M. Frahm, Phys. Rev. E 56, R6237 (1997)
D. Gottesman, Phys. Rev. A 57, 127 (1998)
D. Aharonov, M. Ben-Or, arXiv:quant-ph/9906129
A. Steane, arXiv:quant-ph/0207119
G. Benenti, G. Casati, S. Montangero, D.L. Shepelyansky, Eur. Phys. J. D 20, 293 (2002)
B.L. Altshuler, B.I. Shklovskii, Zh. Eksp. Teor. Fiz. 91, 220 (1986) [Sov. Phys. JETP 64, 127 (1986)]
T. Gorin, T. Prosen, T. H. Seligman, preprint arXiv:nlin.CD/0311022v1
Author information
Authors and Affiliations
Corresponding author
Additional information
Received: 13 December 2003, Published online: 18 March 2004
PACS:
03.67.Lx Quantum computation - 05.45.Pq Numerical simulations of chaotic systems - 05.45.Mt Quantum chaos; semiclassical methods
Rights and permissions
About this article
Cite this article
Frahm, K.M., Fleckinger, R. & Shepelyansky, D.L. Quantum chaos and random matrix theory for fidelity decay in quantum computations with static imperfections. Eur. Phys. J. D 29, 139–155 (2004). https://doi.org/10.1140/epjd/e2004-00038-x
Issue Date:
DOI: https://doi.org/10.1140/epjd/e2004-00038-x