Skip to main content
Log in

Neutrino dimuon production and the strangeness asymmetry of the nucleon

  • experimental physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

We have performed the first global QCD analysis to include the CCFR and NuTeV dimuon data, which provide direct constraints on the strange and antistrange parton distributions, s(x) and \(\bar{s}(x)\). To explore the strangeness sector, we adopt a general parametrization of the non-perturbative \(s(x), \bar{s}(x)\) functions satisfying basic QCD requirements. We find that the strangeness asymmetry, as represented by the momentum integral \([S^{-}]\equiv \int_0^1 x [s(x)-\bar{s}(x)] \mathrm dx\), is sensitive to the dimuon data provided the theoretical QCD constraints are enforced. We use the Lagrange multiplier method to probe the quality of the global fit as a function of [S -] and find -0.001 < [S -] < 0.004. Representative parton distribution sets spanning this range are given. Comparisons with previous work are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Goncharov et al. , CCFR and NuTeV Collab., Phys. Rev. D 64, 112006 (2001); M. Tzanov et al. , NuTeV Collab. hep-ex/0306035

    Google Scholar 

  2. S.J. Brodsky, B.-Q. Ma, Phys. Lett. B 381, 317 (1996); A.I. Signal, A.W. Thomas, Phys. Lett. B 191, 205 (1987); F.G. Cao, A.I. Signal, Phys. Lett. B 559, 229 (2003); M. Wakamatsu, Phys. Rev. D 67, 034005 (2003), and references therein

    Google Scholar 

  3. G.P. Zeller et al. , NuTeV Collab., Phys. Rev. Lett. 88, 091802 (2002)

    Article  Google Scholar 

  4. V. Barone, C. Pascaud, F. Zomer, Eur. Phys. J. C 12, 243 (2000); this analysis is currently being updated and early results have been presented by B. Portheault at DIS03; http://www.desy.de/dis03. The “BPZ with CCFR” curves in Fig. [1] are from the updated results

    Google Scholar 

  5. S. Davidson, S. Forte, P. Gambino, N. Rius, A. Strumia, JHEP 0202, 037, (2002)

    Google Scholar 

  6. K.S. McFarland, S.-O. Moch, hep-ph/0306052

  7. P. Gambino, hep-ph/0211009; A. Strumia, hep-ex/0304039

  8. S. Kretzer et al. , Phys. Rev. Lett. 93, 041802 (2004)

    Google Scholar 

  9. P. Gambino, Int. J. Mod. Phys. A 19, 808 (2004) [hep-ph/0311257]

    Article  Google Scholar 

  10. R.S. Thorne, Int. J. Mod. Phys. A 19, 1074 (2004) [hep-ph/0309343]

    Article  Google Scholar 

  11. H. Abramowicz et al. , CDHSW Collab., Z. Phys. C 15, 19 (1982); C. Foudas et al. , CCFR Collab., Phys. Rev. Lett. 64, 1207 (1990); B. Strongin et al. , Phys. Rev. D 43, 2778 (1991); S.A. Rabinowitz et al. , CCFR Collab., Phys. Rev. Lett. 70, 134 (1993); A.O. Bazarko et al. , CCFR Collab., Z. Phys. C 65, 189 (1995); P. Vilain et al. , CHARM II Collab., Eur. Phys. J. C 11, 19 (1999); P. Astier et al. , NOMAD Collab., Phys. Lett. B 486, 35 (2000)

    Google Scholar 

  12. G.P. Zeller, NuTeV Collab., Phys. Rev. D 65, 111103 (2002); D 67, 119902 (2003) (E); K.S. McFarland et al. , Proceedings of 16th Les Rencontres de Physique de la Vallee d’Aoste: Results and Perspectives in Particle Physics, La Thuile, Aosta Valley, Italy, 3-9 March 2002, hep-ex/0205080

    Article  Google Scholar 

  13. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P. Nadolsky, W.K. Tung, JHEP 0207, 012 (2002)

    Article  Google Scholar 

  14. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 23, 73 (2002)

    Article  MATH  Google Scholar 

  15. M. Glück, E. Reya, A. Vogt, Eur. Phys. J. C 5, 461 (1998)

    Article  Google Scholar 

  16. P. Berge et al. , Z. Phys. C 49, 187 (1991)

    Google Scholar 

  17. M. Glück, S. Kretzer, E. Reya, Phys. Lett. B 380, 171 (1996); B 405, 391 (1996) (E)

    Google Scholar 

  18. R.M. Barnett, Phys. Rev. Lett. 36, 1163 (1976)

    Google Scholar 

  19. T. Gottschalk, Phys. Rev. D 23, 56 (1981)

    Google Scholar 

  20. S. Kretzer, I. Schienbein, Phys. Rev. D 58, 094035 (1998)

    Google Scholar 

  21. M.A.G. Aivazis, F.I. Olness, W.K. Tung, Phys. Rev. Lett. 65, 2339 (1990)

    Google Scholar 

  22. S. Kretzer, M.H. Reno, Phys. Rev. D 69, 034002 (2004)

    Google Scholar 

  23. M. Glück, S. Kretzer, E. Reya, B 398, 381 (1997); B 405, 392 (1997) (E)

    Google Scholar 

  24. S. Kretzer, D. Mason, F.I. Olness, Phys. Rev. D 65, 074010 (2002)

    Google Scholar 

  25. J. Pumplin, D.R. Stump, W.K. Tung, et al. , Phys. Rev. D 65, 014011 (2002); D 65, 014013 (2002); D 65, 014012 (2002)

    Google Scholar 

  26. A.M. Cooper-Sarkar, J. Phys. G 28, 2669 (2002) [hep-ph/0205153]; also http://www-zeuthen.desy.demochheralhcgwenlan-coopersarkar.pdf

    Google Scholar 

  27. S. Catani, D. de Florian, G. Rodrigo, W. Vogelsang, Phys. Rev. Lett. 93, 152003 (2004)

    Google Scholar 

  28. K. MacFarland, P. Spentzouris, communications at the LP03 Symposium and WIN03 Workshop

  29. P. Spentzouris at International Workshop on Weak Interactions and Neutrinos 2003 (WIN03), Lake Geneva, October, 2003

Download references

Author information

Authors and Affiliations

Authors

Additional information

Received: 15 January 2004, Revised: 23 November 2004, Published online: 15 February 2005

PACS:

11.30.Hv, 12.15.-y, 13.15. + g, 12.38.-t, 13.60.Hb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olness, F., Pumplin, J., Stump, D. et al. Neutrino dimuon production and the strangeness asymmetry of the nucleon. Eur. Phys. J. C 40, 145–156 (2005). https://doi.org/10.1140/epjc/s2004-02099-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2004-02099-4

Keywords

Navigation