Skip to main content
Log in

Standard model and new physics contributions to K L and K S into four leptons

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study the K L and K S decays into four leptons (\(e\bar{e}e\bar{e}\), \(\mu\bar{\mu}\mu\bar{\mu}\), \(e\bar{e}\mu\bar{\mu}\)) where we use a form factor motivated by vector meson dominance, and show the dependence of the branching ratios and spectra from the slopes. A precise determination of short-distance contribution to K L μμ is affected by our ignorance on the sign of the amplitude \(\mathcal{A}(K_{L}\to\gamma\gamma)\) but we show a possibility to measure the sign of this amplitude by studying K L and K S decays in four leptons. We also investigate the effect of New Physics contributions for these decays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Numerically we have found that these effects generate α S and β S at \(\mathcal{O}(0.1)\), other effects are substantially smaller. Also we have checked that our parametrization of the off-shell photon behavior of \(\mathcal{O }(p^{4})\) of \(\mathcal{A}(K_{S}\to\gamma^{*}\gamma^{*}) \) from ref. [4] in terms of α S and β S reproduce well \(\operatorname{Br}(K_{S } \to4\ell)\) as described in ref. [8].

  2. We are aware that we do a misuse of writing by exponentiating the amplitude since we do not prove any unitarization of the amplitudes as long as we consider only the first term. But it is quite obvious that faced with the smallness of the numbers, this cannot change a lot the conclusions.

References

  1. R. Aaij et al. (LHCb Collaboration), J. High Energy Phys. 1301, 090 (2013)

    ADS  Google Scholar 

  2. R. Aaij et al. (LHCb Collaboration), Eur. Phys. J. C 73, 2373 (2013)

    Article  Google Scholar 

  3. T. Miyazaki, E. Takasugi, Phys. Rev. D 8, 2051–2062 (1973)

    Article  ADS  Google Scholar 

  4. G. Ecker, A. Pich, Nucl. Phys. B 366, 189 (1991)

    Article  ADS  Google Scholar 

  5. L. Cappiello, G. D’Ambrosio, M. Miragliuolo, Phys. Lett. B 298, 423 (1993)

    Article  ADS  Google Scholar 

  6. A.G. Cohen, G. Ecker, A. Pich, Phys. Lett. B 304, 347 (1993)

    Article  ADS  Google Scholar 

  7. J.L. Goity, L. Zhang, Phys. Rev. D 57, 7031–7033 (1998)

    Article  ADS  Google Scholar 

  8. W. Birkfellner, Diploma Thesis, Univ. of Vienna, 1996

  9. V. Cirigliano, G. Ecker, H. Neufeld, A. Pich, J. Portoles, Rev. Mod. Phys. 84, 399 (2012)

    Article  ADS  Google Scholar 

  10. G. D’Ambrosio, G. Isidori, J. Portolés, Phys. Rev. B 423, 385–394 (1998)

    Google Scholar 

  11. G. Isidori, R. Unterdorfer, J. High Energy Phys. 01, 009 (2004)

    Article  ADS  Google Scholar 

  12. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  13. G. D’Ambrosio, D. Espriu, Phys. Lett. B 175, 237 (1986)

    Article  ADS  Google Scholar 

  14. J.L. Goity, Z. Phys. C 34, 341 (1987)

    Article  ADS  Google Scholar 

  15. G. Buchalla, G. D’Ambrosio, G. Isidori, Nucl. Phys. B 672, 387 (2003)

    Article  ADS  Google Scholar 

  16. N. Cabibbo, A. Maksymovicz, Phys. Rev. B 137, 438–443 (1965). Erratum, Phys. Rev. B 168, 1926 (1968)

    Article  ADS  Google Scholar 

  17. G. D’Ambrosio, G. Isidori, A. Pugliese, N. Paver, Phys. Rev. D 50, 5767–5774 (1994)

    Article  ADS  Google Scholar 

  18. P. Heiliger, L.M. Sehgal, Phys. Rev. D 48, 4146 (1993) [Erratum-ibid. 60, 079902 (1999)]

    Article  ADS  Google Scholar 

  19. G. D’Ambrosio, G. Ecker, G. Isidori, H. Neufeld, hep-ph/9411439

  20. G. D’Ambrosio, J. Portolés, Nucl. Phys. B 492, 417 (1997)

    ADS  Google Scholar 

  21. J.-M. Gerard, C. Smith, S. Trine, Nucl. Phys. B 730 (2005)

  22. D. Gomez-Dumm, A. Pich, Phys. Rev. Lett. 80, 4663 (1998)

    Article  ADS  Google Scholar 

  23. M. Knecht, S. Peris, M. Perrottet, E. de Rafael, Phys. Rev. Lett. 83, 5230 (1999)

    Article  ADS  Google Scholar 

  24. L.M. Sehgal, J. van Leusen, Phys. Rev. Lett. 83, 4933 (1999)

    Article  ADS  Google Scholar 

  25. L. Cappiello, O. Cata, G. D’Ambrosio, D.-N. Gao, Eur. Phys. J. C 72, 1872 (2012) [Erratum-ibid. 72, 2208 (2012)]

    Article  ADS  Google Scholar 

  26. F.E. Low, Phys. Rev. 110, 974 (1958)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank F. Ambrosino, O. Cata, P. Massarotti, J. Portolés for his careful reading of the manuscript, E. de Rafael and M.D. Sokoloff. G.D. acknowledges partial support by MIUR under project 2010YJ2NYW (SIMAMI). D.G.’s work is supported in part by the EU under Contract MTRN-CT-2006-035482 (FLAVIAnet) and by MUIR, Italy, under Project 2005-023102. G.V.’s research has been supported in part by the Spanish Government and ERDF funds from the EU Commission [grants FPA2007-60323, CSD2007-00042 (Consolider Project CPAN)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo D’Ambrosio.

Appendices

Appendix A: Detailed expressions for amplitudes

1.1 A.1 The K S decays amplitudes

For the cases where 1= 2, there exist four diagrams that can be reduced to two different amplitudes \(\mathcal{M}_{A}\) and \(\mathcal{M}_{B}\) (Fig. 7),

$$\begin{aligned} \mathcal{M}_A & = e^2 \frac{\mathrm{F}_S ((p_1+p_2)^2,(p_3+p_4)^2 )}{(p_1+p_2)^2 (p_3+p_4)^2} \\ &\quad {}\times \bigl[ (p_1+p_2) \cdot(p_3+p_4) g^{\mu\nu} \\ &\quad {}- (p_1+p_2)^\nu (p_3+p_4)^\mu \bigr] \\ &\quad {}\times \bigl[ \bar{u}(p_1) \gamma_\mu v(p_2) \bigr] \bigl[ \bar {u}(p_3) \gamma_\nu v(p_4) \bigr] \end{aligned}$$
(A.1)

and

$$\begin{aligned} \mathcal{M}_B & = -e^2 \frac{\mathrm{F}_S ((p_3+p_2)^2,(p_1+p_4)^2 )}{(p_3+p_2)^2 (p_1+p_4)^2} \\ &\quad {}\times \bigl[ (p_2+p_3) \cdot(p_1+p_4) g^{\mu\nu} \\ &\quad {}- (p_2+p_3)^\nu (p_1+p_4)^\mu \bigr] \\ & \quad {}\times \bigl[ \bar{u}(p_3) \gamma_\mu v(p_2) \bigr] \bigl[ \bar {u}(p_1) \gamma_\nu v(p_4) \bigr]. \end{aligned}$$
(A.2)

Thus the total squared amplitude is given by (under symmetries considerations, \(|\mathcal{M}_{A}|^{2} = |\mathcal{M}_{B}|^{2} \)),

$$ | \mathcal{M} |^2 = \frac{1}{2} \bigl(|\mathcal{M}_A|^2 + \mathcal{M}_A \, \mathcal{M}_B^* \bigr). $$
(A.3)
Fig. 7
figure 7

Amplitudes of K S,L in four leptons

In the mixed case, 1=μ and 2=e, there are only two diagrams, and we have \(|\mathcal{M}|^{2}=|\mathcal{M}_{A}|^{2}\).

1.2 A.2 The K L decays amplitudes

The calculations of the amplitudes involving the K L are identical in procedure that the ones for the K S , we have to distinguish two kinds of amplitudes

$$\begin{aligned} \mathcal{M}_A & = e^2 \frac{\mathrm{F}_L ((p_1+p_2)^2,(p_3+p_4)^2 )}{(p_1+p_2)^2 (p_3+p_4)^2} \\ &\quad {}\times\varepsilon_{\mu\nu\rho\sigma} (p_1+p_2)^\rho (p_3+p_4)^\sigma \\ &\quad {}\times \bigl[ \bar{u}(p_1) \gamma^\mu v(p_2) \bigr] \bigl[ \bar {u}(p_3) \gamma^\nu v(p_4) \bigr] \end{aligned}$$
(A.4)

and

$$\begin{aligned} \mathcal{M}_B & =- e^2 \frac{\mathrm{F}_L ((p_3+p_2)^2,(p_1+p_4)^2 )}{(p_3+p_2)^2 (p_1+p_4)^2} \\ &\quad {}\times\varepsilon_{\mu\nu\rho\sigma} (p_2+p_3)^\rho (p_1+p_4)^\sigma \\ &\quad {}\times \bigl[ \bar{u}(p_3) \gamma^\mu v(p_2) \bigr] \bigl[ \bar {u}(p_1) \gamma^\nu v(p_4) \bigr]. \end{aligned}$$
(A.5)

The total amplitude is given by (under symmetries considerations, \(|\mathcal{M}_{A}|^{2} = |\mathcal{M}_{B}|^{2} \)),

$$ | \mathcal{M} |^2 = \frac{1}{2} \bigl(|\mathcal{M}_A|^2 + \mathcal{M}_A \, \mathcal{M}_B^* \bigr). $$
(A.6)

As before, in the mixed case, 1=μ and 2=e, there are only two diagrams, and we have \(|\mathcal{M}|^{2}=|\mathcal{M}_{A}|^{2}\).

Appendix B: Bremsstrahlung CP-violating part

Using Low’s theorem [26], the amplitude \(K_{S} (q)\to \mu (p_{-}) \bar{\mu} (p_{+}) \gamma^{*} (k)\) is the product of the \(K_{S} (q)\to \mu (p_{-}) \bar{\mu} (p_{+})\) amplitude times the contribution of the soft photon radiated (Fig. 8):

$$ \begin{aligned}[b] &\mathcal{M} \bigl(K_S \to\mu\bar{\mu} \gamma^* \bigr) \\ &\quad =k^2\mathrm{F}_B^\mu(k,p_-,p_+)\; \epsilon_{\mu}(k) \mathcal{M}(K_S \to \mu\bar{\mu}), \end{aligned} $$
(B.1)

where \(\mathcal{M}(K_{S} \to\mu\bar{\mu})\) is the decay amplitude of K S into two muons

$$ \mathcal{M}(K_S \to\mu\bar{\mu}) = \mathcal{A}_{SD} \; \bar{u} \gamma _5 v $$
(B.2)

and

$$\begin{aligned} &\mathrm{F}_B^\mu(k,p_-,p_+) \\ &\quad = \frac{2e}{k^2} \biggl[ \frac{p_-^\mu}{k^2 +2 k \cdot p_-} + \frac {p_+^\mu}{k^2 -2 k \cdot p_+} \biggr]. \end{aligned}$$
(B.3)
Fig. 8
figure 8

Bremsstrahlung amplitudes for K S in four leptons

Now, we just have to contract with the muonic current \(-i e \bar {u}\gamma^{\nu}v\;\epsilon^{*}_{\nu}\) to obtain the Bremsstrahlung contribution

$$\begin{aligned} &\mathcal{M}_{\mathrm{Brems.}} \\ &\quad = \mathcal{A}_{SD} \bigl\{ \mathrm{F}_B^\mu(q_1,p_3,p_4) \bigl[ \bar {u}(p_1) \gamma_\mu v(p_2) \bigr] \, \bigl[ \bar{u}(p_3) \gamma_5 v(p_4) \bigr] \\ & \qquad {}+ \mathrm{F}_B^\mu(q_2,p_1,p_2) \bigl[ \bar{u}(p_3) \gamma_\mu v(p_4) \bigr] \, \bigl[ \bar{u}(p_1) \gamma_5 v(p_2) \bigr] \\ & \qquad {}- \mathrm{F}_B^\mu(p_2+p_3,p_1,p_4) \bigl[ \bar{u}(p_3) \gamma_5 v(p_2) \bigr] \\ &\qquad {}\times \bigl[ \bar{u}(p_1) \gamma_\mu v(p_4) \bigr] \\ & \qquad {}- \mathrm{F}_B^\mu(p_1+p_4,p_3,p_2) \bigl[ \bar{u}(p_1) \gamma_\mu v(p_4) \bigr] \\ &\qquad {}\times \bigl[ \bar{u}(p_3) \gamma_5 v(p_2) \bigr] \bigr\} . \end{aligned}$$
(B.4)

In our case, \(\operatorname{Re} \mathcal{A}_{SD} \) can be neglected, all the short-distance information is contained in \(\operatorname{Im} \mathcal {A}_{SD} \) and we have [11]:

$$\begin{aligned} &\operatorname{Im} \mathcal{A}_{SD} \\ &\quad = - \frac{G_F \alpha_\mathrm{em}(M_Z)}{\pi\sin^2 \theta_W}\sqrt{2} m_\mu F_K \operatorname{Im} \bigl(V_{ts}^* V_{td} \bigr) Y(x_t), \end{aligned}$$
(B.5)

with \(x_{t}=m_{t}^{2}/M_{W}^{2}\) and Y(x) is the Inami–Lin function:

$$ Y(x) = \frac{x}{8} \biggl[\frac{4-x}{1-x} + \frac{3x}{(1-x)^2} \ln x \biggr]. $$
(B.6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Ambrosio, G., Greynat, D. & Vulvert, G. Standard model and new physics contributions to K L and K S into four leptons. Eur. Phys. J. C 73, 2678 (2013). https://doi.org/10.1140/epjc/s10052-013-2678-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2678-1

Keywords

Navigation