Skip to main content
Log in

Generalized states in SFT

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The search for analytic solutions in open string fields theory à la Witten often meets with singular expressions, which need an adequate mathematical formalism to be interpreted. In this paper we discuss this problem and propose a way to resolve the related ambiguities. Our claim is that a correct interpretation requires a formalism similar to distribution theory in functional analysis. To this end we concretely construct a locally convex space of test string states together with the dual space of functionals. We show that the above suspicious expressions can be identified with well defined elements of the dual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. To the best of our knowledge this exercise has not yet been carried out in the literature.

  2. This section is based on the results of [39].

  3. In the, so far not met, case where a logs asymptotic contribution appears in the integrand one would need a three step subtraction process.

  4. The numerical factor f(α,β) is needed in order to avoid a catastrophic degeneracy of the inner product. Provided it is sufficiently generic its actual expression is not important in the sequel.

  5. If the inner product is degenerate the subsequent construction can be equally carried out, but it is more complicated, see for instance [46].

References

  1. E. Witten, Noncommutative geometry and string field theory. Nucl. Phys. B 268, 253 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Schnabl, Analytic solution for tachyon condensation in open string field theory. Adv. Theor. Math. Phys. 10, 433 (2006). arXiv:hep-th/0511286

    Article  MATH  MathSciNet  Google Scholar 

  3. Y. Okawa, Comments on Schnabl’s analytic solution for tachyon condensation in Witten’s open string field theory. J. High Energy Phys. 0604, 055 (2006). arXiv:hep-th/0603159

    Article  ADS  MathSciNet  Google Scholar 

  4. L. Rastelli, B. Zwiebach, Solving open string field theory with special projectors. J. High Energy Phys. 0801, 020 (2008). arXiv:hep-th/0606131

    Article  ADS  MathSciNet  Google Scholar 

  5. Y. Okawa, L. Rastelli, B. Zwiebach, Analytic solutions for tachyon condensation with general projectors. arXiv:hep-th/0611110

  6. E. Fuchs, M. Kroyter, On the validity of the solution of string field theory. J. High Energy Phys. 0605, 006 (2006). arXiv:hep-th/0603195

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Erler, M. Schnabl, A simple analytic solution for tachyon condensation. J. High Energy Phys. 0910, 066 (2009). arXiv:0906.0979 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Kiermaier, Y. Okawa, L. Rastelli, B. Zwiebach, Analytic solutions for marginal deformations in open string field theory. J. High Energy Phys. 0801, 028 (2008). arXiv:hep-th/0701249

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Schnabl, Comments on marginal deformations in open string field theory. Phys. Lett. B 654, 194–199 (2007). arXiv:hep-th/0701248

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. M. Kiermaier, Y. Okawa, Exact marginality in open string field theory: a general framework. J. High Energy Phys. 0911, 041 (2009). arXiv:0707.4472 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Fuchs, M. Kroyter, R. Potting, Marginal deformations in string field theory. J. High Energy Phys. 0709, 101 (2007). arXiv:0704.2222 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  12. B.H. Lee, C. Park, D.D. Tolla, Marginal deformations as lower dimensional D-brane solutions in open string field theory. arXiv:0710.1342 [hep-th]

  13. O.K. Kwon, Marginally deformed rolling tachyon around the tachyon vacuum in open string field theory. Nucl. Phys. B 804, 1 (2008). arXiv:0801.0573 [hep-th]

    Article  ADS  MATH  Google Scholar 

  14. T. Erler, Tachyon vacuum in cubic superstring field theory. J. High Energy Phys. 0801, 013 (2008). arXiv:0707.4591 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  15. Y. Okawa, Analytic solutions for marginal deformations in open superstring field theory. J. High Energy Phys. 0709, 084 (2007). arXiv:0704.0936 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  16. Y. Okawa, Real analytic solutions for marginal deformations in open superstring field theory. J. High Energy Phys. 0709, 082 (2007). arXiv:0704.3612 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Kiermaier, Y. Okawa, General marginal deformations in open superstring field theory. J. High Energy Phys. 0911, 042 (2009). arXiv:0708.3394 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  18. T. Erler, Marginal solutions for the superstring. J. High Energy Phys. 0707, 050 (2007). arXiv:0704.0930 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  19. I.Y. Aref’eva, R.V. Gorbachev, D.A. Grigoryev, P.N. Khromov, M.V. Maltsev, P.B. Medvedev, Pure gauge configurations and tachyon solutions to string field theories equations of motion. J. High Energy Phys. 0905, 050 (2009). arXiv:0901.4533 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  20. I.Y. Arefeva, R.V. Gorbachev, On gauge equivalence of tachyon solutions in cubic Neveu–Schwarz string field theory. Theor. Math. Phys. 165, 1512 (2010). arXiv:1004.5064 [hep-th]

    Article  Google Scholar 

  21. E.A. Arroyo, Generating Erler–Schnabl-type solution for tachyon vacuum in cubic superstring field theory. J. Phys. A 43, 445403 (2010). arXiv:1004.3030 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Zeze, Tachyon potential in KBc subalgebra. Prog. Theor. Phys. 124, 567 (2010). arXiv:1004.4351 [hep-th]

    Article  ADS  MATH  Google Scholar 

  23. S. Zeze, Regularization of identity based solution in string field theory. J. High Energy Phys. 1010, 070 (2010). arXiv:1008.1104 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  24. E.A. Arroyo, Comments on regularization of identity based solutions in string field theory. J. High Energy Phys. 1011, 135 (2010). arXiv:1009.0198 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Murata, M. Schnabl, On multibrane solutions in open string field theory. Prog. Theor. Phys. Suppl. 188, 50 (2011). arXiv:1103.1382 [hep-th]

    Article  ADS  MATH  Google Scholar 

  26. M. Murata, M. Schnabl, Multibrane solutions in open string field theory. J. High Energy Phys. 1207, 063 (2012). arXiv:1112.0591 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  27. T. Baba, N. Ishibashi, Energy from the gauge invariant observables. J. High Energy Phys. 04, 050 (2013). arXiv:1208.6206 [hep-th]

    Article  ADS  Google Scholar 

  28. H. Hata, T. Kojita, Singularities in K-space and multi-brane solutions in cubic string field theory. J. High Energy Phys. 1302, 065 (2013). arXiv:1209.4406 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  29. T. Masuda, Comments on new multiple-brane solutions based on Hata–Kojita duality in open string field theory. arXiv:1211.2649 [hep-th]

  30. T. Masuda, On the classical solution for the double-brane background in open string field theory. arXiv:1211.2646 [hep-th]

  31. E. Fuchs, M. Kroyter, Analytical solutions of open string field theory. Phys. Rep. 502, 89 (2011). arXiv:0807.4722 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Schnabl, Algebraic solutions in open string field theory—a lightning review. Acta Polytech. 50(3), 102 (2010). arXiv:1004.4858 [hep-th]

    Google Scholar 

  33. L. Bonora, C. Maccaferri, D.D. Tolla, Relevant deformations in open string field theory: a simple solution for lumps. J. High Energy Phys. 1111, 107 (2011). arXiv:1009.4158 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  34. L. Bonora, S. Giaccari, D.D. Tolla, The energy of the analytic lump solution in SFT. J. High Energy Phys. 08, 158 (2011). arXiv:1005.5926 [hep-th]. Erratum: J. High Energy Phys. 04, 001 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  35. T. Erler, C. Maccaferri, Comments on lumps from RG flows. J. High Energy Phys. 1111, 092 (2011). arXiv:1105.6057 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  36. T. Erler, C. Maccaferri, The phantom term in open string field theory. J. High Energy Phys. 1206, 084 (2012). arXiv:1201.5122 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  37. T. Erler, C. Maccaferri, Connecting solutions in open string field theory with singular gauge transformations. J. High Energy Phys. 1204, 107 (2012). arXiv:1201.5119 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  38. L. Bonora, S. Giaccari, D.D. Tolla, Analytic solutions for Dp branes in SFT. J. High Energy Phys. 12, 033 (2011). arXiv:1106.3914 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  39. L. Bonora, S. Giaccari, D.D. Tolla, Lump solutions in SFT. Complements. arXiv:1109.4336 [hep-th]

  40. E. Witten, Some computations in background independent off-shell string theory. Phys. Rev. D 47, 3405 (1993). arXiv:hep-th/9210065

    Article  ADS  MathSciNet  Google Scholar 

  41. D. Kutasov, M. Marino, G.W. Moore, Some exact results on tachyon condensation in string field theory. J. High Energy Phys. 0010, 045 (2000). arXiv:hep-th/0009148

    Article  ADS  MathSciNet  Google Scholar 

  42. I. Ellwood, Singular gauge transformations in string field theory. J. High Energy Phys. 0905, 037 (2009). arXiv:0903.0390 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  43. I.M. Guelfand, G.E. Chilov, Les Distributions, tome 1, 2 (Dunod, Paris, 1962)

    MATH  Google Scholar 

  44. L. Schwartz, Théorie des distributions à valeurs vectorielles, I. Ann. Inst. Fourier 7, 1–141 (1957)

    Article  MATH  Google Scholar 

  45. L. Schwartz, Théorie des distributions à valeurs vectorielles, II. Ann. Inst. Fourier 8, 1–209 (1958)

    Article  MATH  Google Scholar 

  46. J. Bognar, Indefinite Inner Product Spaces (Springer, Berlin, 1974)

    Book  MATH  Google Scholar 

  47. F. Treves, Topological Vector Spaces, Distributions and Kernels (Academic Press, New York, 1967)

    MATH  Google Scholar 

  48. N. Bourbaki, Espaces Vectoriels Topologiques (Masson, Paris, 1981)

    MATH  Google Scholar 

  49. G. Köthe, Topological Vector Spaces, vol. I (Springer, Berlin, 1983)

    Google Scholar 

  50. K. Yosida, Functional Analysis (Springer, Berlin, 1980)

    Book  MATH  Google Scholar 

  51. L. Rastelli, A. Sen, B. Zwiebach, Star algebra spectroscopy. J. High Energy Phys. 0203, 029 (2002). arXiv:hep-th/0111281

    Article  ADS  MathSciNet  Google Scholar 

  52. L. Bonora, C. Maccaferri, R.J. Scherer Santos, D.D. Tolla, Ghost story, I: wedge states in the oscillator formalism. J. High Energy Phys. 0709, 061 (2007). arXiv:0706.1025 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  53. L. Bonora, C. Maccaferri, R.J. Scherer Santos, D.D. Tolla, Ghost story, II: the midpoint ghost vertex. J. High Energy Phys. 0911, 075 (2009). arXiv:0908.0055 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  54. L. Bonora, C. Maccaferri, D.D. Tolla, Ghost story, III: back to ghost number zero. J. High Energy Phys. 0911, 086 (2009). arXiv:0908.0056 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

L.B. would like to thank Gianni Dal Maso for sharing with him his expertise on functional analysis. We would like to thank D.D. Tolla for discussions and for our using material from previous joint papers. The work of L.B. and S.G. was supported in part by the MIUR-PRIN contract 2009-KHZKRX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bonora.

Appendix

Appendix

In this appendix we would like to briefly discuss the spectrum of operator \(K_{1}^{L}\). The latter operator is defined by

$$\begin{aligned} K_1^L =&\frac{1}{2} K_1 - \frac{1}{\pi} \bigl({\mathcal{L}}_0+{\mathcal{L}}_0^\dagger \bigr) \end{aligned}$$
(73)

where K 1=L 1+L −1 and

$$ \begin{aligned} & \mathcal{L}_0+{\mathcal{L}}_0^\dagger= 2 L_0 +\sum_{n=1}^\infty \ell_{2n} \bigl(L_{2n}+L_{2n}^\dagger\bigr), \quad \ell_{2n}= \frac{2(-1)^{n+1}}{4n^2-1} \end{aligned} $$
(74)

L n represent the total (matter+ghost) Virasoro generators. For the sake of simplicity we restrict ourselves here to the matter part since it is enough to appreciate the complexity of the problem. In terms of oscillators \(a_{n},a_{n}^{\dagger}\), n=1,2,… (we forget a 0 because we are considering 0 momentum states), we can write in compact notation

$$\begin{aligned} K_1= a^\dagger\cdot F a, \qquad \mathcal{L}_0+\mathcal{L}_0^\dagger= a^\dagger A a^\dagger+ a^\dagger C a+a A a \end{aligned}$$
(75)

where F,A,C are ∞×∞ symmetric numerical matrices. Their explicit expressions can be found in [51, 52]. We recall here only the properties

$$\begin{aligned} AF+FA=0,\qquad [C,F]=0 \end{aligned}$$
(76)

which imply that

$$\begin{aligned} \bigl[K_1, {\mathcal{L}}_0+{\mathcal{L}}_0^\dagger\bigr]=0 \end{aligned}$$
(77)

The matrix C and the twisted matrix \(\tilde{A}\) can be diagonalized on the basis v n (κ) of F eigenvectors

$$\begin{aligned} \sum_{m=1}^\infty F_{nm} v_m(\kappa)= \kappa \, v_n(\kappa) \end{aligned}$$
(78)

The relevant eigenvalues \({\mathfrak{c}}(\kappa)\) and \({\mathfrak{a}}(\kappa)\) can be found again in [51, 52]. We have in particular

$$\begin{aligned} \bigl[K_1, a^\dagger\! \cdot v(\kappa)\bigr] = \kappa \, a^\dagger\! \cdot v(\kappa) \end{aligned}$$
(79)

This means that a v(κ)|0〉 is an eigenstate of K 1 with eigenvalue κ. Due to (76), (77) any state of the form

$$\begin{aligned} f\bigl({\mathcal{L}}_0+{\mathcal{L}}_0^\dagger \bigr) a^\dagger \cdot v(\kappa)|0\rangle, \quad \mathrm{or} \quad g \bigl(a^\dagger A a^\dagger\bigr) a^\dagger \cdot v(\kappa)|0 \rangle \end{aligned}$$
(80)

where f,g are arbitrary analytic functions, are also eigenstates of K 1 with eigenvalue κ. Differently from what happens for the matrices \(F,\tilde{A}\) and C, which have common eigenvectors, the situation for the Fock space operators K 1 and \({\mathcal{L}}_{0}+{\mathcal{L}}_{0}^{\dagger}\) is much more complicated: there is an infinite degeneracy corresponding to each eigenvalue κ of K 1. What one should do next is extract from the infinite families (80) the eigenvectors of \({\mathcal{L}}_{0}+{\mathcal{L}}_{0}^{\dagger}\) and calculate the corresponding eigenvalues. Only in this way will one be able to compute the eigenvalues of \(K_{1}^{L}\). Needless to say one should also consider the ghost part of \(K_{1}^{L}\) (for which the results of [5254] may be instrumental). Unfortunately these problems are still waiting for a solution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonora, L., Giaccari, S. Generalized states in SFT. Eur. Phys. J. C 73, 2644 (2013). https://doi.org/10.1140/epjc/s10052-013-2644-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2644-y

Keywords

Navigation