Skip to main content
Log in

Charm quark mass dependence in a global QCD analysis

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study the effect of the charm quark mass in the CTEQ global analysis of parton distribution functions (PDFs) of the proton. Constraints on the \(\overline{\mathrm{MS}}\) mass of the charm quark are examined at the next-to-next-to-leading order (NNLO) accuracy in the S-ACOT-χ heavy-quark factorization scheme. The value of the charm quark mass from the hadronic scattering data in the CT10 NNLO fit, including semi-inclusive charm production in DIS at HERA collider, is found to agree with the world average value. Various approaches for constraining m c in the global analysis and impact on LHC cross sections are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The evolution of α s and PDFs is carried out using the HOPPET computer code [43], configured so that transitions from N f to N f+1 flavors occur at the \(\overline{\mathrm{MS}}\) masses.

  2. For example, m c (m c )=1.15 GeV translates into \(m_{c}^{\mathrm{pole}}=1.31, 1.54, 1.86~\mathrm{GeV}\) using one, two, three loops in the conversion formula with α s (M Z )=0.118.

  3. Starting from O(\(\alpha_{s}^{2}\)), contributions with up to four massive quarks in the final state can appear. In such terms, we still use \(\chi=x (1+4m_{c}^{2}/Q^{2} )\), given their smallness in the total result [29].

  4. A broadscale argument is also available that the probability distribution \(\mathcal{P}(m_{c})\propto \exp (-\chi^{2}(m_{c})/2 )\) on which the Δχ 2=1 criterion is based underestimates the confidence levels in PDF fits [83].

  5. Similar λ dependence is observed for the truncated conversion.

  6. The CT10 or MSTW-like tolerance criteria lead to about the same boundaries.

References

  1. W.-K. Tung, H.-L. Lai, A. Belyaev, J. Pumplin, D. Stump, C.-P. Yuan, J. High Energy Phys. 0702, 053 (2007). arXiv:hep-ph/0611254

    Article  ADS  Google Scholar 

  2. P.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, C.-P. Yuan, Phys. Rev. D 78, 013004 (2008). arXiv:0802.0007

    Article  ADS  Google Scholar 

  3. F. Aaron, et al. (H1 and ZEUS Collaboration), J. High Energy Phys. 1001, 109 (2010). arXiv:0911.0884

    Article  ADS  Google Scholar 

  4. H. Abramowicz et al. (H1 Collaboration ZEUS Collaboration), (2012). arXiv:1211.1182

  5. J. Sanchez Guillen, J. Miramontes, M. Miramontes, G. Parente, O. Sampayo, Nucl. Phys. B 353, 337 (1991)

    Article  ADS  Google Scholar 

  6. W. van Neerven, E. Zijlstra, Phys. Lett. B 272, 127 (1991)

    Article  ADS  Google Scholar 

  7. E. Zijlstra, W. van Neerven, Phys. Lett. B 273, 476 (1991)

    Article  ADS  Google Scholar 

  8. E. Laenen, S. Riemersma, J. Smith, W. van Neerven, Nucl. Phys. B 392, 162 (1993)

    Article  ADS  Google Scholar 

  9. S. Riemersma, J. Smith, W. van Neerven, Phys. Lett. B 347, 143 (1995). arXiv:hep-ph/9411431

    Article  ADS  Google Scholar 

  10. B. Harris, J. Smith, Nucl. Phys. B 452, 109 (1995). arXiv:hep-ph/9503484

    Article  ADS  Google Scholar 

  11. S. Moch, J. Vermaseren, A. Vogt, Phys. Lett. B 606, 123 (2005). arXiv:hep-ph/0411112

    Article  ADS  Google Scholar 

  12. J. Vermaseren, A. Vogt, S. Moch, Nucl. Phys. B 724, 3 (2005). arXiv:hep-ph/0504242

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. J. Blumlein, A. De Freitas, W. van Neerven, S. Klein, Nucl. Phys. B 755, 272 (2006). arXiv:hep-ph/0608024

    Article  ADS  Google Scholar 

  14. I. Bierenbaum, J. Blumlein, S. Klein, Nucl. Phys. B 820, 417 (2009). arXiv:0904.3563

    Article  ADS  MATH  Google Scholar 

  15. J. Ablinger, J. Blumlein, S. Klein, C. Schneider, F. Wissbrock, Nucl. Phys. B 844, 26 (2011). arXiv:1008.3347

    Article  ADS  MATH  Google Scholar 

  16. J. Blumlein, A. Hasselhuhn, S. Klein, C. Schneider, Nucl. Phys. B 866, 196 (2013). arXiv:1205.4184

    Article  ADS  Google Scholar 

  17. J. Ablinger, J. Blumlein, S. Klein, C. Schneider, F. Wissbrock, (2011). arXiv:1106.5937

  18. J. Ablinger, J. Blumlein, A. Hasselhuhn, S. Klein, C. Schneider et al., PoS RADCOR2011, 031 (2011). arXiv:1202.2700

  19. J. Ablinger, J. Blumlein, A. Hasselhuhn, S. Klein, C. Schneider et al., Nucl. Phys. B 864, 52 (2012). arXiv:1206.2252

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. J. Ablinger, J. Blumlein, A. De Freitas, A. Hasselhuhn, S. Klein et al., (2012). arXiv:1212.5950

  21. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  22. M. Aivazis, J.C. Collins, F.I. Olness, W.-K. Tung, Phys. Rev. D 50, 3102 (1994). arXiv:hep-ph/9312319

    Article  ADS  Google Scholar 

  23. M. Buza, Y. Matiounine, J. Smith, W. van Neerven, Eur. Phys. J. C 1, 301 (1998). arXiv:hep-ph/9612398

    ADS  Google Scholar 

  24. A. Chuvakin, J. Smith, W. van Neerven, Phys. Rev. D 61, 096004 (2000). arXiv:hep-ph/9910250

    Article  ADS  Google Scholar 

  25. R. Thorne, R. Roberts, Phys. Lett. B 421, 303 (1998). arXiv:hep-ph/9711223

    Article  ADS  Google Scholar 

  26. R. Thorne, R. Roberts, Phys. Rev. D 57, 6871 (1998). arXiv:hep-ph/9709442

    Article  ADS  Google Scholar 

  27. R. Thorne, Phys. Rev. D 73, 054019 (2006). arXiv:hep-ph/0601245

    Article  ADS  Google Scholar 

  28. S. Forte, E. Laenen, P. Nason, J. Rojo, Nucl. Phys. B 834, 116 (2010). arXiv:1001.2312

    Article  ADS  MATH  Google Scholar 

  29. M. Guzzi, P.M. Nadolsky, H.-L. Lai, C.-P. Yuan, Phys. Rev. D 86, 053005 (2012). arXiv:1108.5112

    Article  ADS  Google Scholar 

  30. M. Kramer, F.I. Olness, D.E. Soper, Phys. Rev. D 62, 096007 (2000). arXiv:hep-ph/0003035

    Article  ADS  Google Scholar 

  31. W.-K. Tung, S. Kretzer, C. Schmidt, J. Phys. G 28, 983 (2002). arXiv:hep-ph/0110247

    Article  ADS  Google Scholar 

  32. J. Gao, M. Guzzi, J. Huston, H.-L. Lai, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, C.-P. Yuan, (2013). arXiv:1302.6246

  33. A. Martin, W. Stirling, R. Thorne, G. Watt, Eur. Phys. J. C 70, 51 (2010). arXiv:1007.2624

    Article  ADS  Google Scholar 

  34. S. Alekhin, J. Blumlein, K. Daum, K. Lipka, S. Moch, (2012). arXiv:1212.2355

  35. N. Gray, D.J. Broadhurst, W. Grafe, K. Schilcher, Z. Phys. C 48, 673 (1990)

    Article  ADS  Google Scholar 

  36. K. Chetyrkin, M. Steinhauser, Nucl. Phys. B 573, 617 (2000). arXiv:hep-ph/9911434

    Article  ADS  Google Scholar 

  37. K. Melnikov, T.v. Ritbergen, Phys. Lett. B 482, 99 (2000). arXiv:hep-ph/9912391

    Article  ADS  Google Scholar 

  38. P. Marquard, L. Mihaila, J. Piclum, M. Steinhauser, Nucl. Phys. B 773, 1 (2007). arXiv:hep-ph/0702185

    Article  ADS  MATH  Google Scholar 

  39. I.I. Bigi, M.A. Shifman, N. Uraltsev, A. Vainshtein, Phys. Rev. D 50, 2234 (1994). arXiv:hep-ph/9402360

    Article  ADS  Google Scholar 

  40. M. Beneke, V.M. Braun, Nucl. Phys. B 426, 301 (1994). arXiv:hep-ph/9402364

    Article  ADS  Google Scholar 

  41. M. Beneke, Phys. Rep. 317, 1 (1999). arXiv:hep-ph/9807443

    Article  ADS  Google Scholar 

  42. P.M. Nadolsky, W.-K. Tung, Phys. Rev. D 79, 113014 (2009). arXiv:0903.2667

    Article  ADS  Google Scholar 

  43. G.P. Salam, J. Rojo, Comput. Phys. Commun. 180, 120 (2009). arXiv:0804.3755

    Article  ADS  Google Scholar 

  44. K. Chetyrkin, J.H. Kuhn, M. Steinhauser, Comput. Phys. Commun. 133, 43 (2000). arXiv:hep-ph/0004189

    Article  ADS  MATH  Google Scholar 

  45. S. Alekhin, S. Moch, Phys. Lett. B 699, 345 (2011). arXiv:1011.5790

    Article  ADS  Google Scholar 

  46. J.C. Collins, Phys. Rev. D 58, 094002 (1998). arXiv:hep-ph/9806259

    Article  ADS  Google Scholar 

  47. A. Benvenuti et al. (BCDMS Collaboration), Phys. Lett. B 223, 485 (1989)

    Article  ADS  Google Scholar 

  48. A. Benvenuti et al. (BCDMS Collaboration), Phys. Lett. B 237, 592 (1990)

    Article  ADS  Google Scholar 

  49. M. Arneodo et al. (New Muon Collaboration), Nucl. Phys. B 483, 3 (1997). arXiv:hep-ph/9610231

    Article  ADS  Google Scholar 

  50. J. Berge, H. Burkhardt, F. Dydak, R. Hagelberg, M. Krasny et al., Z. Phys. C 49, 187 (1991)

    Article  Google Scholar 

  51. U.-K. Yang et al. (CCFR/NuTeV Collaboration), Phys. Rev. Lett. 86, 2742 (2001). arXiv:hep-ex/0009041

    Article  ADS  Google Scholar 

  52. W. Seligman, C. Arroyo, L. de Barbaro, P. de Barbaro, A. Bazarko et al., Phys. Rev. Lett. 79, 1213 (1997). arXiv:hep-ex/9701017

    Article  ADS  Google Scholar 

  53. M. Goncharov et al. (NuTeV Collaboration), Phys. Rev. D 64, 112006 (2001). arXiv:hep-ex/0102049

    Article  ADS  Google Scholar 

  54. D.A. Mason, Ph. D. Thesis FERMILAB-THESIS-2006-01 UMI-32-11223 (2006)

  55. C. Adloff et al. (H1 Collaboration), Phys. Lett. B 528, 199 (2002). arXiv:hep-ex/0108039

    Article  ADS  Google Scholar 

  56. G. Moreno, C. Brown, W. Cooper, D. Finley, Y. Hsiung et al., Phys. Rev. D 43, 2815 (1991)

    Article  ADS  Google Scholar 

  57. R. Towell et al. (FNAL E866/NuSea Collaboration), Phys. Rev. D 64, 052002 (2001). arXiv:hep-ex/0103030

    Article  ADS  Google Scholar 

  58. J. Webb et al. (NuSea Collaboration), (2003). arXiv:hep-ex/0302019

  59. F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 77, 2616 (1996)

    Article  ADS  Google Scholar 

  60. D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 051104 (2005). arXiv:hep-ex/0501023

    Article  ADS  Google Scholar 

  61. V. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101, 211801 (2008). arXiv:0807.3367

    Article  ADS  Google Scholar 

  62. V. Abazov et al. (D0 Collaboration), Phys. Rev. D 77, 011106 (2008). arXiv:0709.4254

    Article  ADS  Google Scholar 

  63. V. Abazov et al. (D0 Collaboration), Phys. Lett. B 658, 112 (2008). arXiv:hep-ex/0608052

    Article  ADS  Google Scholar 

  64. T.A. Aaltonen et al. (CDF Collaboration), Phys. Lett. B 692, 232 (2010). arXiv:0908.3914

    Article  ADS  Google Scholar 

  65. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 78, 052006 (2008). arXiv:0807.2204

    Article  ADS  Google Scholar 

  66. V. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 101, 062001 (2008). arXiv:0802.2400

    Article  ADS  Google Scholar 

  67. G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 85, 072004 (2012). arXiv:1109.5141

    Article  ADS  Google Scholar 

  68. G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 86, 014022 (2012). arXiv:1112.6297

    Article  ADS  Google Scholar 

  69. F. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 71, 1579 (2011). arXiv:1012.4355

    Article  ADS  Google Scholar 

  70. B. Harris, J. Smith, Phys. Rev. D 57, 2806 (1998). arXiv:hep-ph/9706334

    Article  ADS  Google Scholar 

  71. S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C 63, 171 (2009). arXiv:0812.3775

    Article  ADS  Google Scholar 

  72. S. Chekanov et al. (ZEUS Collaboration), Eur. Phys. J. C 65, 65 (2010). arXiv:0904.3487

    Article  ADS  Google Scholar 

  73. F. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 65, 89 (2010). arXiv:0907.2643

    Article  ADS  Google Scholar 

  74. F. Aaron et al. (H1 Collaboration), Phys. Lett. B 686, 91 (2010). arXiv:0911.3989

    Article  ADS  Google Scholar 

  75. A. Aktas et al. (H1 Collaboration), Eur. Phys. J. C 51, 271 (2007). arXiv:hep-ex/0701023

    Article  ADS  Google Scholar 

  76. J. Breitweg et al. (ZEUS Collaboration), Eur. Phys. J. C 12, 35 (2000). arXiv:hep-ex/9908012

    Article  ADS  Google Scholar 

  77. S. Chekanov et al. (ZEUS Collaboration), Phys. Rev. D 69, 012004 (2004). arXiv:hep-ex/0308068

    Article  ADS  Google Scholar 

  78. F. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 71, 1769 (2011). arXiv:1106.1028

    Article  ADS  Google Scholar 

  79. J. Pumplin, D. Stump, J. Huston, H.-L. Lai, P.M. Nadolsky, W.-K. Tung, J. High Energy Phys. 0207, 012 (2002). arXiv:hep-ph/0201195

    Article  ADS  Google Scholar 

  80. H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, C.-P. Yuan, Phys. Rev. D 82, 074024 (2010). arXiv:1007.2241

    Article  ADS  Google Scholar 

  81. J.C. Collins, J. Pumplin, (2001). arXiv:hep-ph/0105207

  82. P. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 2002)

    Google Scholar 

  83. R.D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte et al., Nucl. Phys. B 855, 608 (2012). arXiv:1108.1758

    Article  ADS  Google Scholar 

  84. J. Pumplin, Phys. Rev. D 80, 034002 (2009). arXiv:0904.2425

    Article  ADS  Google Scholar 

  85. J. Pumplin, Phys. Rev. D 81, 074010 (2010). arXiv:0909.0268

    Article  ADS  Google Scholar 

  86. R.D. Ball, S. Carrazza, L. Del Debbio, S. Forte, J. Gao et al., (2012). arXiv:1211.5142

  87. R. Gavin, Y. Li, F. Petriello, S. Quackenbush, Comput. Phys. Commun. 182, 2388 (2011). arXiv:1011.3540

    Article  ADS  Google Scholar 

  88. R. Gavin, Y. Li, F. Petriello, S. Quackenbush, (2012). arXiv:1201.5896

  89. C. Anastasiou, S. Buehler, F. Herzog, A. Lazopoulos, J. High Energy Phys. 1112, 058 (2011). arXiv:1107.0683

    Article  ADS  Google Scholar 

  90. P. Baernreuther, M. Czakon, A. Mitov, Phys. Rev. Lett. 109, 132001 (2012). arXiv:1204.5201

    Article  ADS  Google Scholar 

  91. M. Czakon, P. Fiedler, A. Mitov, (2013). arXiv:1303.6254

  92. H.-L. Lai, J. Huston, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, C.-P. Yuan, Phys. Rev. D 82, 054021 (2010). arXiv:1004.4624

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. DOE Early Career Research Award DE-SC0003870 by Lightner-Sams Foundation. We thank Achim Geiser for the critical reading of the manuscript and appreciate detailed discussions with Karin Daum, Joey Huston, Hung-Liang Lai, Katerina Lipka, Fred Olness, Jon Pumplin, Carl Schmidt, Dan Stump, and C.-P. Yuan. P.N. thanks DESY (Hamburg) for hospitality and financial support of his visit during the work on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, J., Guzzi, M. & Nadolsky, P. Charm quark mass dependence in a global QCD analysis. Eur. Phys. J. C 73, 2541 (2013). https://doi.org/10.1140/epjc/s10052-013-2541-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2541-4

Keywords

Navigation