Skip to main content
Log in

Confronting the MSSM and the NMSSM with the discovery of a signal in the two photon channel at the LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We confront the discovery of a boson decaying into two photons, as reported recently by ATLAS and CMS, with the corresponding predictions in the Minimal Supersymmetric Standard Model (MSSM) and the Next-to-Minimal Supersymmetric Standard Model (NMSSM). We perform a scan over the relevant regions of parameter space in both models and evaluate the MSSM and NMSSM predictions for the dominant Higgs production channel and the photon–photon decay channel. Taking into account the experimental constraints from previous direct searches, flavor physics, electroweak measurements as well as theoretical considerations, we find that a Higgs signal in the two photon channel with a rate equal to, or above, the SM prediction is viable over the full mass range 123≲M H ≲127 GeV, both in the MSSM and the NMSSM. We find that besides the interpretation of a possible signal at about 125 GeV in terms of the lightest \(\mathcal {CP}\)-even Higgs boson, both the MSSM and the NMSSM permit also a viable interpretation where an observed state at about 125 GeV would correspond to the second-lightest \(\mathcal {CP}\)-even Higgs boson in the spectrum, which would be accompanied by another light Higgs with suppressed couplings to W and Z bosons. We find that a significant enhancement of the γγ rate, compatible with the signal strengths observed by ATLAS and CMS, is possible in both the MSSM and the NMSSM, and we analyse in detail different mechanisms in the two models that can give rise to such an enhancement. We briefly discuss also our predictions in the two models for the production and subsequent decay into two photons of a \(\mathcal {CP}\)-odd Higgs boson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Quantities with a hat denote superfields; fields without hats are their corresponding scalar components.

  2. We use a notation that closely follows the one specified in [34] for the MSSM.

  3. Using the latest limits from the CMS update [112] in this channel would lead to only minor changes in the results of our analysis.

  4. Strictly speaking, these results can only be directly interpreted in models with SM-like Higgs production. Even if this does not hold exactly, we have verified for the scenarios considered below that the ratio between the contributions from gluon fusion to vector boson fusion do not deviate from the SM case to the degree that vector boson fusion becomes the dominant production mode. Since we are mainly interested in investigating scenarios with an enhanced rate, we take a conservative approach and apply these bounds for maximal exclusion.

  5. This feature would be avoided with an on-shell renormalisation of \(M_{H^{\pm}}\), see e.g. [34, 59, 60].

  6. We neglect here, and in the following, the theory uncertainty of the Higgs boson mass evaluation, which for the light Higgs boson should be roughly at the level of 2–3 GeV [50].

  7. We have checked that for the relevant regions of parameter space discussed below the gluon fusion production cross section always strongly dominates over the associated Higgs boson production from bottom quarks.

  8. Non-negligible differences are mainly expected if the bottom loop contribution to h i gg dominates over the top loop contribution. In the case of the light \(\mathcal {CP}\)-even Higgs boson can happen for very low M A and moderate to large tanβ values, whereas in the case of the heavy \(\mathcal {CP}\)-even Higgs boson this can happen for larger M A and tanβ≳5. Our results therefore exhibit an additional uncertainly in this part of the parameter space. Additional loop contributions from SUSY particles, while taken into account in our calculation, are usually subdominant and of lesser importance in this context.

  9. The 2011 exclusion limit from CMS in this channel was updated in [138]. Including this limit in our analysis would not qualitatively change our results.

  10. As before, we neglect here and in the following, the theory uncertainty of the Higgs boson mass evaluation, which for the light Higgs boson should be comparable to or slightly larger than the respective uncertainty of the MSSM, i.e. roughly at the level of 2–3 GeV [50].

References

  1. G. Aad et al. (ATLAS Collaboration), arXiv:1207.7214 [hep-ex]

  2. S. Chatrchyan et al. (CMS Collaboration), arXiv:1207.7235 [hep-ex]

  3. https://indico.cern.ch/conferenceDisplay.py?confId=197461

  4. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 710, 49 (2012). arXiv:1202.1408 [hep-ex]

    Article  ADS  Google Scholar 

  5. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 710, 26 (2012). arXiv:1202.1488 [hep-ex]

    Article  ADS  Google Scholar 

  6. CMS Collaboration, arXiv:1202.1488 [hep-ex]

  7. CDF Collaboration, DØ Collaboration, arXiv:1207.0449 [hep-ex]

  8. H.P. Nilles, Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  9. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)

    Article  ADS  Google Scholar 

  10. R. Barbieri, Riv. Nuovo Cimento 11, 1 (1988)

    Google Scholar 

  11. U. Ellwanger, C. Hugonie, A.M. Teixeira, Phys. Rep. 496, 1 (2010). arXiv:0910.1785 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Maniatis, Int. J. Mod. Phys. A 25, 3505 (2010). arXiv:0906.0777 [hep-ph]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. J. Ellis, J.F. Gunion, H.A. Haber, L. Roszkowski, F. Zwirner, Phys. Rev. D 39, 844 (1989)

    Article  ADS  Google Scholar 

  14. D.J. Miller, R. Nevzorov, P.M. Zerwas, Nucl. Phys. B 681, 3 (2004). arXiv:hep-ph/0304049

    Article  ADS  Google Scholar 

  15. A. Djouadi et al., J. High Energy Phys. 0807, 002 (2008). arXiv:0801.4321 [hep-ph]

    Article  ADS  Google Scholar 

  16. U. Ellwanger, J.F. Gunion, C. Hugonie, arXiv:hep-ph/0111179

  17. U. Ellwanger, J.F. Gunion, C. Hugonie, S. Moretti, arXiv:hep-ph/0305109

  18. U. Ellwanger, J.F. Gunion, C. Hugonie, S. Moretti, arXiv:hep-ph/0401228

  19. S. Moretti, S. Munir, P. Poulose, Phys. Lett. B 644, 241 (2007). arXiv:hep-ph/0608233

    Article  ADS  Google Scholar 

  20. J.R. Forshaw, J.F. Gunion, L. Hodgkinson, A. Papaefstathiou, A.D. Pilkington, J. High Energy Phys. 0804, 090 (2008). arXiv:0712.3510 [hep-ph]

    Article  Google Scholar 

  21. A. Belyaev, S. Hesselbach, S. Lehti, S. Moretti, A. Nikitenko, C.H. Shepherd-Themistocleous, arXiv:0805.3505 [hep-ph]

  22. K.E. Williams, G. Weiglein, Phys. Lett. B 660, 217 (2008). arXiv:0710.5320 [hep-ph]

    Article  ADS  Google Scholar 

  23. K.E. Williams, H. Rzehak, G. Weiglein, Eur. Phys. J. C 71, 1669 (2011). arXiv:1103.1335 [hep-ph]

    Article  ADS  Google Scholar 

  24. R. Dermisek, J.F. Gunion, Phys. Rev. Lett. 95, 041801 (2005). arXiv:hep-ph/0502105

    Article  ADS  Google Scholar 

  25. R. Dermisek, J.F. Gunion, Phys. Rev. D 73, 111701 (2006). arXiv:hep-ph/0510322

    Article  ADS  Google Scholar 

  26. R. Dermisek, J.F. Gunion, Phys. Rev. D 75, 075019 (2007). arXiv:hep-ph/0611142

    Article  ADS  Google Scholar 

  27. R. Dermisek, J.F. Gunion, Phys. Rev. D 76, 095006 (2007). arXiv:0705.4387 [hep-ph]

    Article  ADS  Google Scholar 

  28. R. Dermisek, J.F. Gunion, Phys. Rev. D 79, 055014 (2009). arXiv:0811.3537 [hep-ph]

    Article  ADS  Google Scholar 

  29. R. Dermisek, J.F. Gunion, Phys. Rev. D 81, 075003 (2010). arXiv:1002.1971 [hep-ph]

    Article  ADS  Google Scholar 

  30. O. Stål, G. Weiglein, J. High Energy Phys. 1201, 071 (2012). arXiv:1108.0595 [hep-ph]

    Article  ADS  Google Scholar 

  31. U. Ellwanger, Eur. Phys. J. C 71, 2011 (1782). arXiv:1108.0157 [hep-ph]

    Google Scholar 

  32. P. Draper, T. Liu, C.E.M. Wagner, L.-T. Wang, H. Zhang, Phys. Rev. Lett. 106, 121805 (2011). arXiv:1009.3963 [hep-ph]

    Article  ADS  Google Scholar 

  33. D.A. Vasquez, G. Belanger, C. Boehm, A. Pukhov, J. Silk, Phys. Rev. D 82, 115027 (2010). arXiv:1009.4380 [hep-ph]

    Article  ADS  Google Scholar 

  34. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, R. Rzehak, G. Weiglein, J. High Energy Phys. 02, 047 (2007). arXiv:hep-ph/0611326

    Article  ADS  Google Scholar 

  35. A. Djouadi, Phys. Rep. 459, 1 (2008). arXiv:hep-ph/0503173

    Article  ADS  Google Scholar 

  36. S. Heinemeyer, Int. J. Mod. Phys. A 21, 2659 (2006). arXiv:hep-ph/0407244

    Article  ADS  MATH  Google Scholar 

  37. S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rep. 425, 265 (2006). arXiv:hep-ph/0412214

    Article  ADS  Google Scholar 

  38. U. Ellwanger, Phys. Lett. B 303, 271 (1993). arXiv:hep-ph/9302224

    Article  ADS  Google Scholar 

  39. T. Elliott, S.F. King, P.L. White, Phys. Lett. B 305, 71 (1993). arXiv:hep-ph/9302202

    Article  ADS  Google Scholar 

  40. T. Elliott, S.F. King, P.L. White, Phys. Lett. B 314, 56 (1993). arXiv:hep-ph/9305282

    Article  ADS  Google Scholar 

  41. T. Elliott, S.F. King, P.L. White, Phys. Rev. D 49, 2435 (1994). arXiv:hep-ph/9308309

    Article  ADS  Google Scholar 

  42. P.N. Pandita, Phys. Lett. B 318, 338 (1993)

    Article  ADS  Google Scholar 

  43. U. Ellwanger, C. Hugonie, Phys. Lett. B 623, 93 (2005). arXiv:hep-ph/0504269

    Article  ADS  Google Scholar 

  44. G. Degrassi, P. Slavich, Nucl. Phys. B 825, 119 (2010). arXiv:0907.4682 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  45. F. Staub, W. Porod, B. Herrmann, J. High Energy Phys. 1010, 040 (2010). arXiv:1007.4049 [hep-ph]

    Article  ADS  Google Scholar 

  46. R. Benbrik, M. Gomez Bock, S. Heinemeyer, O. Stål, G. Weiglein, L. Zeune (work in progress)

  47. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000). arXiv:hep-ph/9812320

    Article  ADS  MATH  Google Scholar 

  48. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Comput. Phys. Commun. 180, 1426 (2009). See www.feynhiggs.de

    Article  ADS  MATH  Google Scholar 

  49. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  50. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133 (2003). arXiv:hep-ph/0212020

    Article  ADS  Google Scholar 

  51. U. Ellwanger, J.F. Gunion, C. Hugonie, J. High Energy Phys. 0502, 066 (2005). arXiv:hep-ph/0406215

    Article  ADS  Google Scholar 

  52. U. Ellwanger, C. Hugonie, Comput. Phys. Commun. 175, 290 (2006). arXiv:hep-ph/0508022

    Article  ADS  MATH  Google Scholar 

  53. G. Belanger, F. Boudjema, C. Hugonie, A. Pukhov, A. Semenov, J. Cosmol. Astropart. Phys. 0509, 001 (2005). arXiv: hep-ph/0505142

    Article  ADS  Google Scholar 

  54. D. Das, U. Ellwanger, A.M. Teixeira, Comput. Phys. Commun. 183, 774 (2012). arXiv:1106.5633 [hep-ph]

    Article  ADS  Google Scholar 

  55. W. Porod, Comput. Phys. Commun. 153, 275 (2003). arXiv: hep-ph/0301101

    Article  ADS  Google Scholar 

  56. W. Porod, F. Staub, arXiv:1104.1573 [hep-ph]

  57. F. Staub, arXiv:0806.0538 [hep-ph]

  58. F. Staub, Comput. Phys. Commun. 181, 1077 (2010). arXiv:0909.2863 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  59. K. Ender, T. Graf, M. Mühlleitner, H. Rzehak, arXiv:1111.4952 [hep-ph]

  60. T. Graf, R. Grober, M. Mühlleitner, H. Rzehak, K. Walz, arXiv:1206.6806 [hep-ph]

  61. S. Heinemeyer, O. Stål, G. Weiglein, Phys. Lett. B 710, 201 (2012). arXiv:1112.3026 [hep-ph]

    Article  ADS  Google Scholar 

  62. M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner, J. High Energy Phys. 1203, 014 (2012). arXiv:1112.3336 [hep-ph]

    Article  ADS  Google Scholar 

  63. M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner, L.-T. Wang, arXiv:1205.5842 [hep-ph]

  64. H. Baer, V. Barger, A. Mustafayev, arXiv:1112.3017 [hep-ph]

  65. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys. Lett. B 708, 162 (2012). arXiv:1112.3028 [hep-ph]

    Article  ADS  Google Scholar 

  66. M. Kadastik, K. Kannike, A. Racioppi, M. Raidal, J. High Energy Phys. 1205, 061 (2012). arXiv:1112.3647 [hep-ph]

    Article  ADS  Google Scholar 

  67. J. Cao, Z. Heng, D. Li, J.M. Yang, Phys. Lett. B 710, 665 (2012). arXiv:1112.4391 [hep-ph]

    Article  ADS  Google Scholar 

  68. A. Bottino, N. Fornengo, S. Scopel, Phys. Rev. D 85, 095013 (2012). arXiv:1112.5666 [hep-ph]

    Article  ADS  Google Scholar 

  69. F. Brümmer, W. Buchmüller, J. High Energy Phys. 1205, 006 (2012). arXiv:1201.4338 [hep-ph]

    Article  ADS  Google Scholar 

  70. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky, arXiv:1202.3144 [hep-ph]

  71. J. Ellis, K.A. Olive, arXiv:1202.3262 [hep-ph]

  72. N. Desai, B. Mukhopadhyaya, S. Niyogi, arXiv:1202.5190 [hep-ph]

  73. T. Cheng, J. Li, T. Li, D.V. Nanopoulos, C. Tong, arXiv: 1202.6088 [hep-ph]

  74. M. Asano, S. Matsumoto, M. Senami, H. Sugiyama, arXiv:1202.6318 [hep-ph]

  75. J. Cao, Z. Heng, J.M. Yang, J. Zhu, arXiv:1203.0694 [hep-ph]

  76. A. Choudhury, A. Datta, J. High Energy Phys. 1206, 006 (2012). arXiv:1203.4106 [hep-ph]

    Article  ADS  Google Scholar 

  77. P.P. Giardino, K. Kannike, M. Raidal, A. Strumia, arXiv: 1203.4254 [hep-ph]

  78. M.A. Ajaib, I. Gogoladze, F. Nasir, Q. Shafi, arXiv:1204.2856 [hep-ph]

  79. F. Brümmer, S. Kraml, S. Kulkarni, arXiv:1204.5977 [hep-ph]

  80. J.L. Evans, M. Ibe, T.T. Yanagida, arXiv:1204.6085 [hep-ph]

  81. A. Fowlie, M. Kazana, K. Kowalska, S. Munir, L. Roszkowski, E.M. Sessolo, S. Trojanowski, Y.-L.S. Tsai, arXiv:1206.0264 [hep-ph]

  82. U. Ellwanger, J. High Energy Phys. 1203, 044 (2012). arXiv: 1112.3548 [hep-ph]

    Article  ADS  Google Scholar 

  83. L.J. Hall, D. Pinner, J.T. Ruderman, arXiv:1112.2703 [hep-ph]

  84. J.F. Gunion, Y. Jiang, S. Kraml, arXiv:1201.0982 [hep-ph]

  85. S.F. King, M. Mühlleitner, R. Nevzorov, Nucl. Phys. B 860, 207 (2012). arXiv:1201.2671 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  86. Z. Kang, J. Li, T. Li, arXiv:1201.5305 [hep-ph]

  87. D.A. Vasquez, G. Belanger, C. Boehm, J. Da Silva, P. Richardson, C. Wymant, arXiv:1203.3446 [hep-ph]

  88. U. Ellwanger, C. Hugonie, arXiv:1203.5048 [hep-ph]

  89. E. Gabrielli, K. Kannike, B. Mele, A. Racioppi, M. Raidal, arXiv:1204.0080 [hep-ph]

  90. J. Rathsman, T. Rossler, arXiv:1206.1470 [hep-ph]

  91. J. Cao, Z. Heng, J.M. Yang, Y. Zhang, J. Zhu, J. High Energy Phys. 1203, 086 (2012). arXiv:1202.5821 [hep-ph]

    Article  ADS  Google Scholar 

  92. J. Kublbeck, M. Bohm, A. Denner, Comput. Phys. Commun. 60, 165 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  93. A. Denner, H. Eck, O. Hahn, J. Kublbeck, Phys. Lett. B 291, 278 (1992)

    Article  ADS  Google Scholar 

  94. A. Denner, H. Eck, O. Hahn, J. Kublbeck, Nucl. Phys. B 387, 467 (1992)

    Article  ADS  Google Scholar 

  95. J. Kublbeck, H. Eck, R. Mertig, Nucl. Phys. Proc. Suppl. 29A, 204 (1992)

    ADS  Google Scholar 

  96. T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv: hep-ph/0012260

    Article  ADS  MATH  Google Scholar 

  97. T. Hahn, C. Schappacher, Comput. Phys. Commun. 143, 54 (2002). arXiv:hep-ph/0105349

    Article  ADS  MATH  Google Scholar 

  98. T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565

    Article  ADS  Google Scholar 

  99. T. Hahn, Comput. Phys. Commun. 178, 217 (2008). arXiv: hep-ph/0611273

    Article  ADS  Google Scholar 

  100. G.J. van Oldenborgh, Comput. Phys. Commun. 66, 1 (1991)

    Article  ADS  MATH  Google Scholar 

  101. J.A.M. Vermaseren, arXiv:math-ph/0010025

  102. N.D. Christensen, C. Duhr, Comput. Phys. Commun. 180, 1614 (2009). arXiv:0806.4194 [hep-ph]

    Article  ADS  Google Scholar 

  103. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 181, 138 (2010). arXiv:0811.4169 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  104. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 182, 2605 (2011). arXiv:1102.1898 [hep-ph]

    Article  ADS  Google Scholar 

  105. U. Ellwanger, M. Rausch de Traubenberg, C.A. Savoy, Nucl. Phys. B 492, 21 (1997). arXiv:hep-ph/9611251

    ADS  MATH  Google Scholar 

  106. S.F. King, P.L. White, Phys. Rev. D 52, 4183 (1995). arXiv: hep-ph/9505326

    Article  ADS  Google Scholar 

  107. M. Masip, R. Munoz-Tapia, A. Pomarol, Phys. Rev. D 57, R5340 (1998). arXiv:hep-ph/9801437

    Article  ADS  Google Scholar 

  108. LEP Higgs working group, Phys. Lett. B 565, 61 (2003). arXiv:hep-ex/0306033

    Article  ADS  Google Scholar 

  109. LEP Higgs working group, Eur. Phys. J. C 47, 547 (2006). arXiv:hep-ex/0602042

    Article  ADS  Google Scholar 

  110. F. Mahmoudi, J. Rathsman, O. Stål, L. Zeune, Eur. Phys. J. C 71, 1608 (2011). arXiv:1012.4490 [hep-ph]

    Article  ADS  Google Scholar 

  111. CMS Collaboration, CMS PAS HIG-11-020

  112. CMS Collaboration, CMS-PAS-HIG-11-029

  113. ATLAS Collaboration, ATLAS-CONF-2011-161

  114. CMS Collaboration, CMS-HIG-11-030

  115. ATLAS Collaboration, arXiv:1112.2577 [hep-ex]

  116. CMS Collaboration, CMS-HIG-11-024

  117. T. Figy, S. Palmer, G. Weiglein, J. High Energy Phys. 1202, 105 (2012). arXiv:1012.4789 [hep-ph]

    Article  ADS  Google Scholar 

  118. W. Hollik, T. Plehn, M. Rauch, H. Rzehak, Phys. Rev. Lett. 102, 091802 (2009). arXiv:0804.2676 [hep-ph]

    Article  ADS  Google Scholar 

  119. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  120. ATLAS Collaboration, ATLAS-CONF-2012-033

  121. CMS Collaboration, CMS-PAS-SUS-11-016

  122. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Eur. Phys. J. C 71, 1515 (2011). arXiv:1010.4180 [hep-ph]

    Article  ADS  Google Scholar 

  123. G. Bennett et al., The Muon g−2 Collaboration. Phys. Rev. Lett. 92, 161802 (2004). arXiv:hep-ex/0401008

    Article  ADS  Google Scholar 

  124. G. Bennett et al., Phys. Rev. D 73, 072003 (2006). arXiv: hep-ex/0602035

    Article  ADS  Google Scholar 

  125. J.F. Gunion, D. Hooper, B. McElrath, Phys. Rev. D 73, 015011 (2006). arXiv:hep-ph/0509024

    Article  ADS  Google Scholar 

  126. J.F. Gunion, J. High Energy Phys. 0908, 032 (2009). arXiv: 0808.2509 [hep-ph]

    Article  ADS  Google Scholar 

  127. F. Domingo, U. Ellwanger, J. High Energy Phys. 0807, 079 (2008). arXiv:0806.0733 [hep-ph]

    Article  ADS  Google Scholar 

  128. G. Hiller, Phys. Rev. D 70, 034018 (2004). arXiv:hep-ph/0404220

    Article  MathSciNet  ADS  Google Scholar 

  129. F. Domingo, U. Ellwanger, J. High Energy Phys. 0712, 090 (2007). arXiv:0710.3714 [hep-ph]

    Article  ADS  Google Scholar 

  130. B.A. Dobrescu, G.L. Landsberg, K.T. Matchev, Phys. Rev. D 63, 075003 (2001). arXiv:hep-ph/0005308

    Article  ADS  Google Scholar 

  131. B.A. Dobrescu, K.T. Matchev, J. High Energy Phys. 0009, 031 (2000). arXiv:hep-ph/0008192

    Article  ADS  Google Scholar 

  132. K. Cheung, J. Song, Q.S. Yan, Phys. Rev. Lett. 99, 031801 (2007). arXiv:hep-ph/0703149

    Article  ADS  Google Scholar 

  133. M.A. Sanchis-Lozano, arXiv:0709.3647 [hep-ph]

  134. E. Barberio et al. (Heavy Flavor Averaging Group (HFAG)), arXiv:hep-ex/0603003. See also updated data on the HFAG webpage

  135. CMS and LHCb Collaborations, CMS-PAS-BPH-11-019, LHCb-CONF-2011-047

  136. D. Asner et al. (Heavy Flavor Averaging Group (HFAG)), arXiv:1010.1589 [hep-ex]

  137. A. Abulencia et al. (CDF Collaboration), Phys. Rev. Lett. 97, 242003 (2006). arXiv:hep-ex/0609040

    Article  ADS  Google Scholar 

  138. CMS Collaboration, CMS-PAS-HIG-12-001

  139. J. Cao, Z. Heng, T. Liu, J.M. Yang, Phys. Lett. B 703, 462 (2011). arXiv:1103.0631 [hep-ph]

    Article  ADS  Google Scholar 

  140. N.D. Christensen, T. Han, S. Su, arXiv:1203.3207 [hep-ph]

  141. A. Arvanitaki, G. Villadoro, J. High Energy Phys. 1202, 144 (2012). arXiv:1112.4835 [hep-ph]

    Article  ADS  Google Scholar 

  142. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 16, 139 (2000). arXiv:hep-ph/0003022

    Article  ADS  Google Scholar 

  143. M. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein, arXiv: hep-ph/0202167

  144. R. Hempfling, Phys. Rev. D 49, 6168 (1994)

    Article  ADS  Google Scholar 

  145. L. Hall, R. Rattazzi, U. Sarid, Phys. Rev. D 50, 7048 (1994). arXiv:hep-ph/9306309

    Article  ADS  Google Scholar 

  146. M. Carena, M. Olechowski, S. Pokorski, C. Wagner, Nucl. Phys. B 426, 269 (1994). arXiv:hep-ph/9402253

    Article  ADS  Google Scholar 

  147. M. Carena, D. Garcia, U. Nierste, C. Wagner, Nucl. Phys. B 577, 577 (2000). arXiv:hep-ph/9912516

    Article  Google Scholar 

  148. D. Noth, M. Spira, Phys. Rev. Lett. 101, 181801 (2008). arXiv:0808.0087 [hep-ph]

    Article  ADS  Google Scholar 

  149. D. Noth, M. Spira, J. High Energy Phys. 1106, 084 (2011). arXiv:1001.1935 [hep-ph]

    Article  ADS  Google Scholar 

  150. J. Frere, D. Jones, S. Raby, Nucl. Phys. B 222, 11 (1983)

    Article  ADS  Google Scholar 

  151. M. Claudson, L. Hall, I. Hinchliffe, Nucl. Phys. B 228, 501 (1983)

    Article  ADS  Google Scholar 

  152. C. Kounnas, A. Lahanas, D. Nanopoulos, M. Quiros, Nucl. Phys. B 236, 438 (1984)

    Article  ADS  Google Scholar 

  153. J. Gunion, H. Haber, M. Sher, Nucl. Phys. B 306, 1 (1988)

    Article  ADS  Google Scholar 

  154. J. Casas, A. Lleyda, C. Munoz, Nucl. Phys. B 471, 3 (1996). arXiv:hep-ph/9507294

    Article  ADS  Google Scholar 

  155. P. Langacker, N. Polonsky, Phys. Rev. D 50, 2199 (1994). arXiv: hep-ph/9403306

    Article  ADS  Google Scholar 

  156. A. Strumia, Nucl. Phys. B 482, 24 (1996). arXiv:hep-ph/9604417

    Article  ADS  Google Scholar 

  157. U. Ellwanger, Phys. Lett. B 698, 293 (2011). arXiv:1012.1201 [hep-ph]

    Article  ADS  Google Scholar 

  158. G. Keller, D. Wyler, Nucl. Phys. B 274, 410 (1986)

    Article  ADS  Google Scholar 

  159. J.F. Gunion, H.E. Haber, C. Kao, Phys. Rev. D 46, 2907 (1992)

    Article  ADS  Google Scholar 

  160. P.H. Chankowski, S. Pokorski, J. Rosiek, Nucl. Phys. B 423, 497 (1994)

    Article  ADS  Google Scholar 

  161. G.A. Moortgat-Pick, S. Hesselbach, F. Franke, H. Fraas, J. High Energy Phys. 0506, 048 (2005). arXiv:hep-ph/0502036

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Duhr, B. Fuks, S. Liebler and F. Staub for helpful discussions. We are also grateful to T. Stefaniak and O. Brein for discussions and assistance with HiggsBounds. The work of S.H. was partially supported by CICYT (grant FPA 2007–66387 and FPA 2010–22163-C02-01), and by the Spanish MICINN’s Consolider-Ingenio 2010 Program under grant MultiDark CSD2009-00064. Work supported in part by the European Community’s Marie-Curie Research Training Network under contract MRTN-CT-2006-035505 “Tools and Precision Calculations for Physics Discoveries at Colliders” and by the Collaborative Research Center SFB676 of the DFG, “Particles, Strings, and the Early Universe”. The work of R.B. was supported by the Spanish Consejo Superior de Investigaciones Cientificas (CSIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Stål.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benbrik, R., Gomez Bock, M., Heinemeyer, S. et al. Confronting the MSSM and the NMSSM with the discovery of a signal in the two photon channel at the LHC. Eur. Phys. J. C 72, 2171 (2012). https://doi.org/10.1140/epjc/s10052-012-2171-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2171-2

Keywords

Navigation