Skip to main content
Log in

Constraints on two-lepton two-quark operators

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Physics from beyond the Standard Model, such as leptoquarks, can induce four fermion operators involving a quark, an anti-quark, a lepton and an anti-lepton. We update the (flavour-dependent) constraints on the coefficients of such interactions, arising from collider searches for contact interactions, meson decays and other rare processes. We then make naive estimates for the magnitude of the coefficients, as could arise in texture models or from inverse hierarchies in the kinetic term coefficients. These “expectations” suggest that rare kaon decays could be a good place to look for such operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Buras, P. Gambino, M. Gorbahn, S. Jager, L. Silvestrini, Universal unitarity triangle and physics beyond the Standard Model. Phys. Lett. B 500, 161 (2001). arXiv:hep-ph/0007085

    Article  ADS  Google Scholar 

  2. R.S. Chivukula, H. Georgi, Phys. Lett. B 188, 99 (1987)

    Article  ADS  Google Scholar 

  3. G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Minimal flavour violation: An effective field theory approach. Nucl. Phys. B 645, 155 (2002). arXiv:hep-ph/0207036

    Article  ADS  Google Scholar 

  4. W. Buchmüller, D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation. Nucl. Phys. B 268, 621 (1986)

    Article  ADS  Google Scholar 

  5. K.S. McFarland et al. (CCFR Collaboration and The E744 Collaboration and The E770 Collaboration), A precision measurement of electroweak parameters in neutrino nucleon scattering. Eur. Phys. J. C 1, 509 (1998). arXiv:hep-ex/9701010

    Article  ADS  Google Scholar 

  6. S. Schael et al. (ALEPH Collaboration), Fermion pair production in e + e collisions at 189–209-GeV and constraints on physics beyond the standard model. Eur. Phys. J. C 49, 411 (2007). arXiv:hep-ex/0609051

    Article  ADS  Google Scholar 

  7. F. Abe et al. (CDF Collaboration), Limits on quark-lepton compositeness scales from dileptons produced in 1.8 TeV \(p\bar{p}\) collisions. Phys. Rev. Lett. 79, 2198 (1997)

    Article  ADS  Google Scholar 

  8. http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm. D0 note 4922-CONF, D0 note 4552-CONF

  9. R. Ciesielski (H1 and ZEUS Collaborations), Search for leptoquarks and contact interactions at HERA. PoS E PS-HEP2009, 269 (2009)

    Google Scholar 

  10. C. Amsler et al., The review of particle physics, Particle data book. Phys. Lett. B 667 (2008), and 2009 partial update for the 2010 edition

  11. C. Dohmen et al. (SINDRUM II Collaboration), Test of lepton flavor conservation in Mu → E conversion on titanium. Phys. Lett. B 317, 631 (1993)

    Article  ADS  Google Scholar 

  12. G. Bhattacharyya, J.R. Ellis, K. Sridhar, Bounds on the masses and couplings of leptoquarks from leptonic partial widths of the Z. Phys. Lett. B 336, 100 (1994). arXiv:hep-ph/9406354 [Erratum-ibid. B 338 (1994) 522]

    Article  ADS  Google Scholar 

  13. J.K. Mizukoshi, O.J.P. Eboli, M.C. Gonzalez-Garcia, Bounds on scalar leptoquarks from Z physics. Nucl. Phys. B 443, 20 (1995). arXiv:hep-ph/9411392

    Article  ADS  Google Scholar 

  14. R. Benbrik, C.K. Chua, Lepton flavor violating llγ and \(Z \to l \bar{l}'\) decays induced by scalar leptoquarks. Phys. Rev. D 78, 075025 (2008). arXiv:0807.4240 [hep-ph]

    Article  ADS  Google Scholar 

  15. V.D. Barger, K.m. Cheung, K. Hagiwara, D. Zeppenfeld, Global study of electron quark contact interactions. Phys. Rev. D 57, 391 (1998). arXiv:hep-ph/9707412

    Article  ADS  Google Scholar 

  16. M. Raidal et al., Flavour physics of leptons and dipole moments. Eur. Phys. J. C 57, 13 (2008). arXiv:0801.1826 [hep-ph]

    Article  ADS  Google Scholar 

  17. A.E. Nelson, Contact terms, compositeness, and atomic parity violation. Phys. Rev. Lett. 78, 4159 (1997). arXiv:hep-ph/9703379

    Article  ADS  Google Scholar 

  18. E. Eichten, K.D. Lane, M.E. Peskin, New tests for quark and lepton substructure. Phys. Rev. Lett. 50, 811 (1983)

    Article  ADS  Google Scholar 

  19. M.K. Gaillard, B.W. Lee, Rare decay modes of the K-Mesons in gauge theories. Phys. Rev. D 10, 897 (1974)

    Article  ADS  Google Scholar 

  20. A. Pich, J.P. Silva, Constraining new interactions with leptonic τ decays. Phys. Rev. D 52, 4006 (1995). arXiv:hep-ph/9505327

    Article  ADS  Google Scholar 

  21. A. Ibarra, E. Masso, J. Redondo, Systematic approach to gauge-invariant relations between lepton flavor violating processes. Nucl. Phys. B 715, 523 (2005). arXiv:hep-ph/0410386

    Article  ADS  MATH  Google Scholar 

  22. R.J. Cashmore et al., Exotic phenomena in high-energy E P collisions. Phys. Rep. 122, 275 (1985)

    Article  ADS  Google Scholar 

  23. W. Buchmuller, D. Wyler, Constraints on the universal contact interaction. Phys. Lett. B 407, 147 (1997). arXiv:hep-ph/9704317

    Article  ADS  Google Scholar 

  24. N. Di Bartolomeo, M. Fabbrichesi, Four-fermion effective interactions and recent data at HERA. Phys. Lett. B 406, 237 (1997). arXiv:hep-ph/9703375

    Article  ADS  Google Scholar 

  25. K.m. Cheung, Constraints on electron quark contact interactions and implications to models of leptoquarks and extra Z bosons. Phys. Lett. B 517, 167 (2001). arXiv:hep-ph/0106251

    Article  ADS  Google Scholar 

  26. A.F. Zarnecki, Global analysis of eeqq contact interactions and future prospects for high-energy physics. Eur. Phys. J. C 11, 539 (1999). arXiv:hep-ph/9904334

    ADS  Google Scholar 

  27. W. Buchmüller, R. Rückl, D. Wyler, Leptoquarks in lepton quark collisions. Phys. Lett. B 191, 442 (1987) [Erratum-ibid. B 448 (1999) 320]

    Article  ADS  Google Scholar 

  28. W. Buchmuller, D. Wyler, Constraints on SU(5) type leptoquarks. Phys. Lett. B 177, 377 (1986)

    Article  ADS  Google Scholar 

  29. S. Davidson, D.C. Bailey, B.A. Campbell, Model independent constraints on leptoquarks from rare processes. Z. Phys. C 61, 613 (1994). arXiv:hep-ph/9309310

    Article  ADS  Google Scholar 

  30. M. Herz, Bounds on leptoquark and supersymmetric, R-parity violating interactions from meson decays (in German). arXiv:hep-ph/0301079

  31. M. Leurer, Bounds on vector leptoquarks. Phys. Rev. D 50, 536 (1994). arXiv:hep-ph/9312341

    Article  ADS  Google Scholar 

  32. M. Leurer, A comprehensive study of leptoquark bounds. Phys. Rev. D 49, 333 (1994). arXiv:hep-ph/9309266

    Article  ADS  Google Scholar 

  33. J. Blumlein, On the expectations for leptoquarks in the mass range of O (200-GeV). Z. Phys. C 74, 605 (1997). arXiv:hep-ph/9703287

    Article  Google Scholar 

  34. R.N. Cahn, H. Harari, Bounds on the masses of neutral generation changing gauge bosons. Nucl. Phys. B 176, 135 (1980)

    Article  ADS  Google Scholar 

  35. E. Salvioni, A. Strumia, G. Villadoro, F. Zwirner, Non-universal minimal Z′ models: present bounds and early LHC reach. JHEP 1003, 010 (2010). arXiv:0911.1450

    Article  ADS  Google Scholar 

  36. X.G. He, G. Valencia, D\(\bar{D}\) mixing constraints on FCNC with a non-universal Z′. Phys. Lett. B 651, 135 (2007). arXiv:hep-ph/0703270

    Article  ADS  Google Scholar 

  37. T.G. Rizzo, Z′ phenomenology and the LHC. arXiv:hep-ph/0610104

  38. T.P. Cheng, M. Sher, Mass matrix ansatz and flavor nonconservation in models with multiple Higgs doublets. Phys. Rev. D 35, 3484 (1987)

    Article  ADS  Google Scholar 

  39. H.K. Dreiner, M. Kramer, B. O’Leary, Bounds on R-parity violation from leptonic and semi-leptonic meson decays. Phys. Rev. D 75, 114016 (2007). arXiv:hep-ph/0612278

    Article  ADS  Google Scholar 

  40. H.K. Dreiner, G. Polesello, M. Thormeier, Bounds on broken R-parity from leptonic meson decays. Phys. Rev. D 65, 115006 (2002). arXiv:hep-ph/0112228

    Article  ADS  Google Scholar 

  41. A. Matsuzaki, General analysis of B meson decay into two fermions. Prog. Theor. Phys. 123, 499 (2010). arXiv:0904.4375 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  42. B.A. Campbell, A. Ismail, Leptonic pion decay and physics beyond the electroweak standard model. arXiv:0810.4918 [hep-ph]

  43. A.D. Smirnov, Mod. Phys. Lett. A 22, 2353 (2007). arXiv:0705.0308 [hep-ph]

    Article  ADS  Google Scholar 

  44. J.P. Saha, B. Misra, A. Kundu, Constraining scalar leptoquarks from the K and B sectors. arXiv:1003.1384

  45. C.S. Kim, J. Lee, W. Namgung, CP violation in the semileptonic B(l4) (BDπlν) decays: Multi-Higgs doublet model and scalar-leptoquark models. Phys. Rev. D 59, 114006 (1999). arXiv:hep-ph/9811396

    Article  ADS  Google Scholar 

  46. A.K. Alok, A. Dighe, D. Ghosh, D. London, J. Matias, M. Nagashima, A. Szynkman, New-physics contributions to the forward-backward asymmetry in BK μ +. JHEP 1002, 053 (2010). arXiv:0912.1382

    Article  ADS  Google Scholar 

  47. C. Bobeth, G. Hiller, G. Piranishvili, Angular distributions of BKll decays. JHEP 0712, 040 (2007). arXiv:0709.4174 [hep-ph]

    Article  ADS  Google Scholar 

  48. F. Mescia, C. Smith, S. Trine, K(L)→π 0 e + e and K(L)→π 0 μ + μ : A binary star on the stage of flavor physics. JHEP 0608, 088 (2006). arXiv:hep-ph/0606081

    Article  ADS  Google Scholar 

  49. A.V. Artamonov et al. (E949 Collaboration), New measurement of the \(K^{+} \to \pi^{+} \nu \bar{\nu}\) branching ratio. Phys. Rev. Lett. 101, 191802 (2008). arXiv:0808.2459 [hep-ex]

    Article  ADS  Google Scholar 

  50. B.A. Dobrescu, A.S. Kronfeld, Accumulating evidence for nonstandard leptonic decays of D s mesons. Phys. Rev. Lett. 100, 241802 (2008). arXiv:0803.0512 [hep-ph]

    Article  ADS  Google Scholar 

  51. R. Benbrik, C.H. Chen, Leptoquark on P +ν, FCNC and LFV. Phys. Lett. B 672, 172 (2009). arXiv:0807.2373 [hep-ph]

    Article  ADS  Google Scholar 

  52. A. Bazavov et al. (Fermilab Lattice and MILC Collaborations), The D s and D + leptonic decay constants from lattice QCD. PoS LAT2009, 249 (2009). arXiv:0912.5221

    Google Scholar 

  53. S. Fajfer, N. Kosnik, Leptoquarks in FCNC charm decays. Phys. Rev. D 79, 017502 (2009). arXiv:0810.4858 [hep-ph]

    Article  ADS  Google Scholar 

  54. I. Dorsner, S. Fajfer, J.F. Kamenik, N. Kosnik, Can scalar leptoquarks explain the \(f_{D_{s}}\) puzzle? Phys. Lett. B 682, 67 (2009). arXiv:0906.5585 [hep-ph]

    Article  ADS  Google Scholar 

  55. E. Golowich, J. Hewett, S. Pakvasa, A.A. Petrov, Implications of D 0\(\bar{D}^{0}\) mixing for New Physics. Phys. Rev. D 76, 095009 (2007). arXiv:0705.3650 [hep-ph]

    Article  ADS  Google Scholar 

  56. C. Bernard et al., B and D meson decay constants. PoS LATTICE2008, 278 (2008). arXiv:0904.1895 [hep-lat]

    Google Scholar 

  57. V. Cirigliano, J. Jenkins, M. Gonzalez-Alonso, Semileptonic decays of light quarks beyond the Standard Model. Nucl. Phys. B 830, 95 (2010). arXiv:0908.1754 [hep-ph]

    Article  ADS  Google Scholar 

  58. G. Czapek et al., Branching ratio for the rare pion decay into positron and neutrino. Phys. Rev. Lett. 70, 17 (1993)

    Article  ADS  Google Scholar 

  59. D.I. Britton et al., Measurement of the π +e + neutrino branching ratio. Phys. Rev. D 49, 28 (1994)

    Article  ADS  Google Scholar 

  60. M. Finkemeier, Radiative corrections to pi(l2) and K(l2) decays. Phys. Lett. B 387, 391 (1996). arXiv:hep-ph/9505434

    Article  ADS  Google Scholar 

  61. W.J. Marciano, A. Sirlin, Radiative corrections to pi(lepton 2) decays. Phys. Rev. Lett. 71, 3629 (1993)

    Article  ADS  Google Scholar 

  62. O.P. Yushchenko et al., High statistic measurement of the K π 0 e ν decay form-factors. Phys. Lett. B 589, 111 (2004). arXiv:hep-ex/0404030

    Article  ADS  Google Scholar 

  63. O.P. Yushchenko et al., High statistic study of the K π 0 μ ν decay. Phys. Lett. B 581, 31 (2004). arXiv:hep-ex/0312004

    Article  ADS  Google Scholar 

  64. E. Gamiz, M. Jamin, A. Pich, J. Prades, F. Schwab, Theoretical progress on the V us determination from tau decays. PoS KAON, 008 (2008). arXiv:0709.0282 [hep-ph]

    Google Scholar 

  65. A. Pich, Theoretical overview on tau physics. Int. J. Mod. Phys. A 21, 5652 (2006). arXiv:hep-ph/0609138

    Article  ADS  Google Scholar 

  66. S. Kanemura, T. Ota, K. Tsumura, Phys. Rev. D 73, 016006 (2006). arXiv:hep-ph/0505191

    Article  ADS  Google Scholar 

  67. R. Benbrik, C.K. Chua, Lepton flavor violating llγ and \(Z \to l \bar{l}'\) decays induced by scalar leptoquarks. Phys. Rev. D 78, 075025 (2008). arXiv:0807.4240 [hep-ph]

    Article  ADS  Google Scholar 

  68. E. Gabrielli, Model independent constraints on leptoquarks from MU and TAU lepton rare processes. Phys. Rev. D 62, 055009 (2000). arXiv:hep-ph/9911539

    Article  ADS  Google Scholar 

  69. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, Reading, 1995), 842p

    Google Scholar 

  70. Z. Han, W. Skiba, Effective theory analysis of precision electroweak data. Phys. Rev. D 71, 075009 (2005). arXiv:hep-ph/0412166

    Article  ADS  Google Scholar 

  71. C.S. Wood, S.C. Bennett, D. Cho, B.P. Masterson, J.L. Roberts, C.E. Tanner, C.E. Wieman, Measurement of parity nonconservation and an anapole moment in cesium. Science 275, 1759 (1997)

    Article  Google Scholar 

  72. J. Guena, M. Lintz, M.A. Bouchiat, Atomic parity violation: Principles, recent results, present motivations. Mod. Phys. Lett. A 20, 375 (2005). arXiv:physics/0503143

    Article  ADS  Google Scholar 

  73. R.D. Young, R.D. Carlini, A.W. Thomas, J. Roche, Testing the Standard Model by precision measurement of the weak charges of quarks. Phys. Rev. Lett. 99, 122003 (2007). arXiv:0704.2618 [hep-ph]

    Article  ADS  Google Scholar 

  74. O.U. Shanker, Z dependence of coherent Mu E conversion rate in anomalous neutrinoless muon capture. Phys. Rev. D 20, 1608 (1979)

    Article  ADS  Google Scholar 

  75. K. Huitu, J. Maalampi, M. Raidal, A. Santamaria, New constraints on R-parity violation from mu e conversion in nuclei. Phys. Lett. B 430, 355 (1998). arXiv:hep-ph/9712249

    Article  ADS  Google Scholar 

  76. K.m. Cheung, Muon anomalous magnetic moment and leptoquark solutions. Phys. Rev. D 64, 033001 (2001). arXiv:hep-ph/0102238

    Article  ADS  Google Scholar 

  77. A. Czarnecki, W.J. Marciano, The muon anomalous magnetic moment: A harbinger for ‘new physics’. Phys. Rev. D 64, 013014 (2001). arXiv:hep-ph/0102122

    Article  ADS  Google Scholar 

  78. G. Couture, H. Konig, Bounds on second generation scalar leptoquarks from the anomalous magnetic moment of the muon. Phys. Rev. D 53, 555 (1996). arXiv:hep-ph/9507263

    Article  ADS  Google Scholar 

  79. M.A. Doncheski, R.W. Robinett, Leptoquark production in ultrahigh-energy neutrino interactions revisited. Phys. Rev. D 56, 7412 (1997). arXiv:hep-ph/9707328

    Article  ADS  Google Scholar 

  80. L.A. Anchordoqui, C.A. Garcia Canal, H. Goldberg, D.G. Dumm, F. Halzen, Probing leptoquark production at IceCube. Phys. Rev. D 74, 125021 (2006). arXiv:hep-ph/0609214

    Article  ADS  Google Scholar 

  81. I. Romero, O.A. Sampayo, Leptoquarks signals in KM3 neutrino telescopes. JHEP 0905, 111 (2009). arXiv:0906.5245 [hep-ph]

    Article  ADS  Google Scholar 

  82. Y. Grossman, Nonstandard neutrino interactions and neutrino oscillation experiments. Phys. Lett. B 359, 141 (1995). arXiv:hep-ph/9507344

    Article  ADS  Google Scholar 

  83. M. Honda, Y. Kao, N. Okamura, A. Pronin, T. Takeuchi, Constraints on New Physics from long baseline neutrino oscillation experiments. arXiv:0707.4545 [hep-ph]

  84. E. Keith, E. Ma, Oblique S and T parameters and leptoquark models of the HERA events. Phys. Rev. Lett. 79, 4318 (1997). arXiv:hep-ph/9707214

    Article  ADS  Google Scholar 

  85. P.H. Frampton, M. Harada, Constraints from precision electroweak data on leptoquarks and bileptons. Phys. Rev. D 58, 095013 (1998). arXiv:hep-ph/9711448

    Article  ADS  Google Scholar 

  86. A.D. Smirnov, Bounds on scalar leptoquark and scalar gluon masses from S, T, U in the minimal four color symmetry model. Phys. Lett. B 531, 237 (2002). arXiv:hep-ph/0202229

    Article  ADS  Google Scholar 

  87. C. Biggio, M. Blennow, E. Fernandez-Martinez, General bounds on non-standard neutrino interactions. JHEP 0908, 090 (2009). arXiv:0907.0097 [hep-ph]

    Article  ADS  Google Scholar 

  88. V. Cirigliano, B. Grinstein, G. Isidori, M.B. Wise, Minimal flavor violation in the lepton sector. Nucl. Phys. B 728, 121 (2005). arXiv:hep-ph/0507001

    Article  ADS  Google Scholar 

  89. M.B. Gavela, T. Hambye, D. Hernandez, P. Hernandez, Minimal flavour seesaw models. JHEP 0909, 038 (2009). arXiv:0906.1461 [hep-ph]

    Article  ADS  Google Scholar 

  90. S. Davidson, F. Palorini, Various definitions of minimal flavour violation for leptons. Phys. Lett. B 642, 72 (2006). arXiv:hep-ph/0607329

    Article  ADS  Google Scholar 

  91. T. Feldmann, T. Mannel, Minimal flavour violation and beyond. JHEP 0702, 067 (2007). arXiv:hep-ph/0611095

    Article  ADS  Google Scholar 

  92. S. Davidson, S. Descotes-Genon, Minimal flavour violation for leptoquarks. JHEP (2010, accepted). arXiv:1009.1998 [hep-ph]

  93. N. Arkani-Hamed, M. Schmaltz, Phys. Rev. D 61, 033005 (2000). arXiv:hep-ph/9903417

    Article  ADS  Google Scholar 

  94. Y. Grossman, M. Neubert, Phys. Lett. B 474, 361 (2000). arXiv:hep-ph/9912408

    Article  MathSciNet  ADS  MATH  Google Scholar 

  95. T. Gherghetta, A. Pomarol, Nucl. Phys. B 586, 141 (2000). arXiv:hep-ph/0003129

    Article  MathSciNet  ADS  MATH  Google Scholar 

  96. S. Davidson, G. Isidori, S. Uhlig, Solving the flavour problem with hierarchical fermion wave functions. Phys. Lett. B 663, 73 (2008). arXiv:0711.3376 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sacha Davidson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpentier, M., Davidson, S. Constraints on two-lepton two-quark operators. Eur. Phys. J. C 70, 1071–1090 (2010). https://doi.org/10.1140/epjc/s10052-010-1482-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1482-4

Keywords

Navigation