Skip to main content
Log in

Wormholes supported by polytropic phantom energy

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

It is generally agreed that the acceleration of the Universe can best be explained by the presence of dark or phantom energy. The equation of state of the latter shows that the null energy condition is violated. Such a violation is the primary ingredient for sustaining traversable wormholes. This paper discusses wormholes supported by a more general form called polytropic phantom energy. Its equation of state results in significant generalizations of the phantom-energy and, in some cases, the generalized Chaplygin-gas wormhole models, both of which continue to receive considerable attention from researchers. Several specific solutions are explored, namely, a constant redshift function, a particular choice of the shape function, and an isotropic-pressure model with various shape functions. Some of the wormhole spacetimes are asymptotically flat, but most are not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Teo, Phys. Rev. D 58, 024014 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  2. P.K.F. Kuhfittig, Phys. Rev. D 67, 064015 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  3. P.E. Kashargin, S.V. Sushkov, arXiv:0710.5656 [gr-qc]

  4. M. Jamil, M.A. Rashid, arXiv:0805.0966 [astro-ph]

  5. G. Clement, Phys. Rev. D 51, 6803 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  6. P.K.F. Kuhfittig, Phys. Rev. D 71, 104007 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  7. K.A. Bronnikov, J.P.S. Lemos, Phys. Rev. D 79, 104019 (2009)

    Article  ADS  Google Scholar 

  8. J.P.S. Lemos et al., Phys. Rev. D 68, 064004 (2003)

    Article  ADS  Google Scholar 

  9. J.P.S. Lemos, F.S.N. Lobo, Phys. Rev. D 78, 044030 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  10. S.-W. Kim, H. Lee, Phys. Rev. D 63, 064014 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  11. F.S.N. Lobo, arXiv:0710.4474 [gr-qc]

  12. L. Flamm, Phys. Z. 17, 448 (1916)

    Google Scholar 

  13. A. Einstein, N. Rosen, Phys. Rev. 48, 73 (1935)

    Article  MATH  ADS  Google Scholar 

  14. R.W. Fuller, J.A. Wheeler, Phys. Rev. 128, 919 (1962)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  16. M.S. Morris et al., Phys. Rev. Lett. 61, 1446 (1988)

    Article  ADS  Google Scholar 

  17. T.A. Roman, Phys. Rev. D 47, 1370 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  18. S.W. Hawking, Phys. Rev. D 46, 603 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Krasnikov, Phys. Rev. D 62, 084028 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Jamil et al., Eur. Phys. J. C 59, 907 (2009)

    Article  ADS  Google Scholar 

  21. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  22. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  23. D.N. Spergel et al., Astrophys. J. 148, 175 (2003)

    Article  Google Scholar 

  24. D.N. Spergel et al., Astrophys. J. 170, 377 (2007)

    Article  Google Scholar 

  25. E.J. Copeland et al., arXiv:hep-th/0603057

  26. R.R. Caldwell, Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  27. V. Faraoni, W. Israel, Phys. Rev. D 71, 064017 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  28. P.K.F. Kuhfittig, Sch. Res. Exch. 2008, 296158 (2008)

    Google Scholar 

  29. P.K.F. Kuhfittig, Am. J. Phys. 67, 125 (1999)

    Article  ADS  Google Scholar 

  30. L.A. Anchordoqui et al., Phys. Rev. D 57, 829 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  31. B. Bhawal, S. Kar, Phys. Rev. D 46, 2464 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  32. D. Hochberg, Phys. Lett. B 251, 349 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  33. L.A. Anchordoqui, gr-qc/9612056

  34. F. Rahaman et al., Nuovo Cimento B 121, 303 (2006)

    MathSciNet  ADS  Google Scholar 

  35. R.A. Konoplya, C. Molina, Phys. Rev. D 71, 124009 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Chakraborty, T. Bandyopadhyay, arXiv:0707.1181 [gr-qc]

  37. K.A. Bronnikov, S.-W. Kim, Phys. Rev. D 67, 064027 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  38. D. Hochberg, T.W. Kephart, Phys. Rev. Lett. 70, 2665 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. N.S. Kardashev, Int. J. Mod. Phys. D 16, 909 (2007)

    Article  MATH  ADS  Google Scholar 

  40. E.A. Larranaga, arXiv:gr-qc/0505054v6

  41. M. Safonova, D.F. Torres, Mod. Phys. Lett. A 17, 1685 (2002)

    Article  MATH  ADS  Google Scholar 

  42. A.A. Abdujabbarov, B.J. Ahmedov, Astrophys. Space Sci. 321, 225 (2009)

    Article  MATH  ADS  Google Scholar 

  43. T. Harko et al., Phys. Rev. D 78, 084005 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  44. R.R. Caldwell et al., Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  45. M. Jamil et al., Eur. Phys. J. C 58, 325 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  46. E. Babichev et al., Phys. Rev. Lett. 93, 021102 (2004)

    Article  ADS  Google Scholar 

  47. S. Nesseris, L. Perivolaropoulos, Phys. Rev. D 70, 123529 (2004)

    Article  ADS  Google Scholar 

  48. D.F. Mota, C. van de Bruck, Astron. Astrophys. 421, 71 (2004)

    Article  MATH  ADS  Google Scholar 

  49. S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 103522 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  50. P.F. Gonzalez-Diaz, C.L. Siguenza, Nucl. Phys. B 697, 363 (2004)

    Article  MATH  ADS  Google Scholar 

  51. S. Sushkov, Phys. Rev. D 71, 043520 (2005)

    Article  ADS  Google Scholar 

  52. M. Cataldo et al., Phys. Rev. D 79, 024005 (2009)

    Article  ADS  Google Scholar 

  53. J.A. Gonzalez et al., Phys. Rev. D 79, 064027 (2009)

    Article  ADS  Google Scholar 

  54. F. Rahaman et al., Phys. Lett. B 633, 161 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  55. F. Rahaman et al., Phys. Scr. 76, 56 (2007)

    Article  MATH  ADS  Google Scholar 

  56. P.K.F. Kuhfittig, Class. Quantum Gravity 23, 5853 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. F. Rahaman et al., Gen. Rel. Grav. 39, 145 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  58. F.S.N. Lobo, Phys. Rev. D 71, 084011 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  59. F.S.N. Lobo, Phys. Rev. D 73, 064028 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  60. O. Bertolami, J. Paramos, Phys. Rev. D 72, 123512 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  61. S. Capozziello et al., Phys. Rev. D 80, 104030 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  62. J.P.S. Lemos et al., Phys. Rev. D 68, 064004 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubasher Jamil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamil, M., Kuhfittig, P.K.F., Rahaman, F. et al. Wormholes supported by polytropic phantom energy. Eur. Phys. J. C 67, 513–520 (2010). https://doi.org/10.1140/epjc/s10052-010-1325-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1325-3

Keywords

Navigation