Skip to main content
Log in

Mass spectrum of diquarks and mesons in the color–flavor locked phase of dense quark matter

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The spectrum of meson and diquark excitations of dense quark matter is considered in the framework of the Nambu–Jona-Lasinio model with three types of massless quarks in the presence of a quark number chemical potential μ. We investigate the effective action of meson and diquark fields both at sufficiently large values of μ>μc≈  330 MeV, where the color–flavor locked (CFL) phase is realized, and in the chirally broken phase of quark matter (μ<μc). In the latter case all nine pseudoscalar mesons are Nambu–Goldstone (NG) bosons, whereas the mass of the scalar meson nonet is twice the dynamical quark mass. In the chirally broken phase the pseudoscalar diquarks are not allowed to exist as stable particles, but the scalar diquarks might be stable only at a rather strong interaction in the diquark channel. In the case of the CFL phase, all NG bosons of the model are realized as scalar and pseudoscalar diquarks. Moreover, it turns out that massive diquark excitations are unstable for this phase. In particular, for the scalar and pseudoscalar octets of diquark resonances a mass value around 230 MeV was found numerically. In contrast, mesons are stable particles in the CFL phase. Their masses lie in the interval 400–500 MeV for not too large values of μ>μc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Alford, K. Rajagopal, F. Wilczek, Nucl. Phys. B 537, 443 (1999)

    Article  ADS  Google Scholar 

  2. M. Alford, J. Berges, K. Rajagopal, Nucl. Phys. B 558, 219 (1999)

    Article  ADS  Google Scholar 

  3. M. Rho, E. Shuryak, A. Wirzba, I. Zahed, Nucl. Phys. A 676, 273 (2000)

    Article  ADS  Google Scholar 

  4. V.A. Miransky, I.A. Shovkovy, L.C.R. Wijewardhana, Phys. Rev. D 63, 056005 (2001)

    Article  ADS  Google Scholar 

  5. V.P. Gusynin, I.A. Shovkovy, Nucl. Phys. A 700, 577 (2002)

    Article  MATH  ADS  Google Scholar 

  6. R. Casalbuoni, R. Gatto, Phys. Lett. B 464, 111 (1999)

    Article  ADS  Google Scholar 

  7. C. Manuel, M.H.G. Tytgat, Phys. Lett. B 479, 190 (2000)

    Article  ADS  Google Scholar 

  8. S.R. Beane, P.F. Bedaque, M.J. Savage, Phys. Lett. B 483, 131 (2000)

    Article  ADS  Google Scholar 

  9. D.T. Son, M.A. Stephanov, Phys. Rev. D 61, 074012 (2000)

    Article  ADS  Google Scholar 

  10. G. Nardulli, Riv. Nuovo Cimento 25, 1 (2002)

    Google Scholar 

  11. V.A. Miransky, I.A. Shovkovy, Phys. Rev. Lett. 88, 111601 (2002)

    Article  ADS  Google Scholar 

  12. T. Schäfer et al., Phys. Lett. B 522, 67 (2001)

    Article  MATH  ADS  Google Scholar 

  13. T. Brauner, hep-ph/0607102

  14. J.O. Andersen, hep-ph/0609020

  15. E.J. Ferrer, V. de la Incera, nucl-th/0703034

  16. N. Yamamoto, M. Tachibana, T. Hatsuda, G. Baym, arXiv:0704.2654

  17. M.G. Alford, M. Braby, A. Schmitt, arXiv:0707.2389

  18. R. Nebauer, F. Gastineau, J. Aichelin, Phys. Rev. C 65, 045204 (2002)

    Article  ADS  Google Scholar 

  19. M. Buballa, M. Oertel, Nucl. Phys. A 703, 770 (2002)

    Article  ADS  Google Scholar 

  20. F. Neumann, M. Buballa, M. Oertel, Nucl. Phys. A 714, 481 (2003)

    Article  MATH  ADS  Google Scholar 

  21. H.J. Warringa, D. Boer, J.O. Andersen, Phys. Rev. D 72, 014015 (2005)

    Article  ADS  Google Scholar 

  22. E.J. Ferrer, V. de la Incera, C. Manuel, Phys. Rev. Lett. 95, 152002 (2005)

    Article  ADS  Google Scholar 

  23. E.J. Ferrer, V. de la Incera, C. Manuel, Nucl. Phys. B 747, 88 (2006)

    Article  MATH  ADS  Google Scholar 

  24. H.J. Warringa, hep-ph/0606063

  25. H. Abuki, T. Kunihiro, Nucl. Phys. A 768, 118 (2006)

    Article  ADS  Google Scholar 

  26. M. Buballa, Phys. Rep. 407, 205 (2005)

    Article  ADS  Google Scholar 

  27. J. Kundu, S. Reddy, Phys. Rev. C 70, 055803 (2004)

    Article  ADS  Google Scholar 

  28. K. Fukushima, K. Iida, Phys. Rev. D 71, 074011 (2005)

    Article  ADS  Google Scholar 

  29. V. Werth, M. Buballa, M. Oertel, hep-ph/0611392

  30. V. Kleinhaus, M. Buballa, D. Nickel, M. Oertel, arXiv:0707.0632

  31. D. Ebert, K.G. Klimenko, Phys. Rev. D 75, 045005 (2007)

    Article  ADS  Google Scholar 

  32. D. Blaschke, D. Ebert, K.G. Klimenko, M.K. Volkov, V.L. Yudichev, Phys. Rev. D 70, 014006 (2004)

    Article  ADS  Google Scholar 

  33. D. Ebert, K.G. Klimenko, V.L. Yudichev, Phys. Rev. C 72, 015201 (2005)

    Article  ADS  Google Scholar 

  34. D. Ebert, K.G. Klimenko, Theor. Math. Phys. 150, 82 (2007)

    Article  MATH  Google Scholar 

  35. D. Ebert, K.G. Klimenko, V.L. Yudichev, Phys. Rev. D 72, 056007 (2005)

    Article  ADS  Google Scholar 

  36. D. Ebert, K.G. Klimenko, V.L. Yudichev, Phys. Rev. D 75, 025024 (2007)

    Article  ADS  Google Scholar 

  37. L. He, M. Jin, P. Zhuang, hep-ph/0504148

  38. L. He, M. Jin, P. Zhuang, hep-ph/0511300

  39. M. Hashimoto, Phys. Lett. B 642, 93 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Hashimoto, hep-ph/0702165

  41. J.B. Kogut et al., Nucl. Phys. B 582, 477 (2000)

    Article  ADS  Google Scholar 

  42. P. Costa et al., Phys. Rev. C 70, 025204 (2004)

    Article  ADS  Google Scholar 

  43. P. Zhuang, hep-ph/0503250

  44. G. Sun, L. He, P. Zhuang, hep-ph/0703159

  45. D. Ebert, K.G. Klimenko, H. Toki, Phys. Rev. D 64, 014038 (2001)

    Article  ADS  Google Scholar 

  46. V.C. Zhukovsky et al., JETP Lett. 74, 523 (2001)

    Article  ADS  Google Scholar 

  47. V.C. Zhukovsky et al., hep-ph/0108185

  48. D. Ebert, T. Jurke, Phys. Rev. D 58, 034001 (1998)

    Article  ADS  Google Scholar 

  49. L.J. Abu-Raddad, A. Hosaka, D. Ebert, H. Toki, Phys. Rev. C 66, 025206 (2002)

    Article  ADS  Google Scholar 

  50. A. Haghpayma, arXiv:0708.0763

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.G. Klimenko.

Additional information

PACS

11.30.Qc; 12.38.-t; 12.39.-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, D., Klimenko, K. & Yudichev, V. Mass spectrum of diquarks and mesons in the color–flavor locked phase of dense quark matter. Eur. Phys. J. C 53, 65–76 (2008). https://doi.org/10.1140/epjc/s10052-007-0446-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0446-9

Keywords

Navigation