Skip to main content
Log in

Time delay in 1D disordered media with high transmission

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the time delay of reflected and transmitted waves in 1D disordered media with high transmission. Highly transparent and translucent random media are found in nature or can be synthetically produced. We perform numerical simulations of microwaves propagating in disordered waveguides to show that reflection amplitudes are described by complex Gaussian random variables with the remarkable consequence that the time-delay statistics in reflection of 1D disordered media are described as in random media in the diffusive regime. For transmitted waves, we show numerically that the time delay is an additive quantity and its fluctuations thus follow a Gaussian distribution. Ultimately, the distributions of the time delay in reflection and transmission are physical illustrations of the central limit theorem at work.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data presented in this study are available on request from the corresponding author.]

References

  1. M. Büttiker, H. Thomas, A. Prêtre, Phys. Lett. A 180, 364 (1993)

    ADS  Google Scholar 

  2. A. Prêtre, H. Thomas, M. Büttiker, Phys. Rev. B 54, 8130 (1996)

    ADS  Google Scholar 

  3. T. Christen, M. Büttiker, Phys. Rev. Lett. 77, 143 (1996)

    ADS  Google Scholar 

  4. P. Brouwer, M. Büttiker, Europhys. Lett. 37, 441 (1997)

    ADS  Google Scholar 

  5. V.A. Gopar, P.A. Mello, M. Büttiker, Phys. Rev. Lett. 77, 3005 (1996)

    ADS  Google Scholar 

  6. C.A.A. de Carvalho, H.M. Nussenzvei, Phys. Rep. 364, 83 (2002)

    ADS  MathSciNet  Google Scholar 

  7. Y. Huang, X. Ma, A.Z. Genack, V.A. Gopar, Phys. Rev. B 104, 104204 (2021)

    ADS  Google Scholar 

  8. A. Comtet, C. Texier, J. Phys. A: Math. Gen. 30, 8017 (1997)

    ADS  Google Scholar 

  9. C. Texier, A. Comtet, Phys. Rev. Lett. 82, 4220 (1999)

    ADS  Google Scholar 

  10. C.J. Bolton-Heaton, C.J. Lambert, V.I. Fal’ko, Phys. Rev. B. 60, 10569 (1999)

    ADS  Google Scholar 

  11. H. Schomerus, Phys. Rev. E 64, 026606 (2001)

    ADS  Google Scholar 

  12. S.A. Ramakrishna, N. Kumar, Phys. Rev. B 61, 3163–3165 (2000)

    ADS  Google Scholar 

  13. C.W.J. Beenakker, in C. Soukoulis (Ed.), Photonic Crystals and Light Localization in the 21st Century, NATO Science Series C563 (Kluwer, Dordrecht, 2001), pp. 489–508

  14. Y.V. Fyodorov, JETP Lett. 78, 250–254 (2003)

    ADS  Google Scholar 

  15. A. Ossipov, Y.V. Fyodorov, Phys. Rev. B 71, 125133 (2005)

    ADS  Google Scholar 

  16. C. Texier, Phys. E 82, 16 (2016)

    Google Scholar 

  17. T. Kottos, J. Phys. A: Math. Gen. 38, 10761 (2005)

    ADS  MathSciNet  Google Scholar 

  18. A.Z. Genack, P. Sebbah, M. Stoytchev, B.A. van Tiggelen, Phys. Rev. Lett. 82, 715 (1999)

    ADS  Google Scholar 

  19. Y. Kim, S. Baek, P. Gupta et al., Sci. Rep. 9, 2265 (2019)

    Google Scholar 

  20. A. Mafi, J. Ballato, K.W. Koch, A. Schülzgen, J. Lightwave Technol. 37, 5652 (2019)

    ADS  Google Scholar 

  21. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q.-H. Park, W. Choi, Nature Photon 6, 581–585 (2012)

    ADS  Google Scholar 

  22. P. Hsieh, C. Chung, J.F. McMillan, M. Tsai, M. Lu, N.C. Panoiu, C.W. Wong, Nature Phys. 11, 268–274 (2015)

  23. L. Pattelli, G. Mazzamuto, D.S. Wiersma, C. Toninelli, Phys. Rev. A 94, 043846 (2016)

    ADS  Google Scholar 

  24. D. Di Battista, G. Zacharakis, M. Leonetti, Sci. Rep. 5, 17406 (2015)

    ADS  Google Scholar 

  25. V.V. Osipov, O.L. Khasanov, V.I. Solomonov, V.A. Shitov, A.N. Orlov, V.V. Platonov, A.V. Spirina, K.E. Luk’yashin, E.S. Dvilis, Russ. Phys. J. 53, 263–269 (2010)

    Google Scholar 

  26. K. Al-Saghir, S. Chenu, E. Veron, F. Fayon, M. Suchomel, C. Genevois, F. Porcher, G. Matzen, D. Massiot, M. Allix, Chem. Mater. 27, 508–514 (2015)

    Google Scholar 

  27. I. Vellekoop, A. Lagendijk, A. Mosk, Nature Photon. 4, 320 (2010)

    Google Scholar 

  28. Z. Shi, A.Z. Genack, Nat. Commun. 9, 1862 (2018)

    ADS  Google Scholar 

  29. P. van Loevezijn, R. Schlatmann et al., Appl. Opt. 35, 3614 (1996)

    ADS  Google Scholar 

  30. E.P. Wigner, Phys. Rev. 147, 145–147 (1955)

    ADS  Google Scholar 

  31. F.T. Smith, Phys. Rev. 119, 2098 (1960)

    ADS  Google Scholar 

  32. A.D. Stone, D.C. Allan, J.D. Joannopoulos, Phys. Rev. B 27, 836 (1983)

    ADS  Google Scholar 

  33. P. Markoš, C.M. Soukoulis, Wave Propagation (From Electrostatics to Photonic Crystals and Left-Handed Materials (Princeton University Press, Princeton, 2008)

  34. P.A. Mello, N. Kumar, Quantum Transport in Mesoscopic Systems: Complexity and Statistical Fluctuations (Oxford University Press, Oxford, 2004)

    Google Scholar 

  35. J. W. Goodman, Statistical Optics (Wiley-Interscience; 1st edition, USA, 2000)

  36. S.O. Rice, Bell Syst. Techn. J. 27, 109 (1948)

    Google Scholar 

  37. B.A. van Tiggelen, P. Sebbah, M. Stoytchev, A.Z. Genack, Phys. Rev. E 59, 7166 (1999)

    ADS  Google Scholar 

  38. A.A. Chabanov, A.Z. Genack, Phys. Rev. Lett. 87, 233903 (2001)

    ADS  Google Scholar 

  39. L.A. Razo-López, A.A. Fernández-Marín, J.A. Méndez-Bermúdez, J. Sánchez-Dehesa, V.A. Gopar, Sci. Rep. 10, 20816 (2020)

    Google Scholar 

  40. R. Pierrat, P. Ambichl, S. Gigan, A. Haber, R. Carminati, S. Rotter, Proc. Natl. Acad. Sci. 111, 7765 (2014)

    Google Scholar 

  41. R. Savo, R. Pierrat, U. Najar, R. Carminati, S. Rotter, S. Gigan, Science 358, 765 (2017)

    ADS  Google Scholar 

  42. Y. Huang, Y. Kang, A.Z. Genack, Phys. Rev. Res. 4, 013102 (2022)

    Google Scholar 

  43. B.A. van Tiggelen, S.E. Skipetrov, J.H. Page, Eur. Phys. J. Spec. Top. 226, 1457 (2017)

    Google Scholar 

  44. J. Friedel, Phil. Mag. 43, 153 (1952)

    Google Scholar 

  45. M.G. Krein, Mat. Sb. (N.S.) 33, 597 (1953)

    Google Scholar 

  46. M. Büttiker, H. Thomas, Z. Pr\(\hat{\rm e}\)tre, Phys. B Condens. Matter 94, 133 (1994)

  47. I.M. Lifshitz, Uspekhi Mat. Nauk. 7, 171 (1952)

    Google Scholar 

  48. Z. Shi, A.Z. Genack, Nat. Commun. 9, 1862 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by MCIU (Spain) under the Project number PGC2018-094684-B-C22. L.A.R.-L. acknowledges the financial support by CONACyT through the Grants No. 490639 and No. 775585 (Mexico) and IDEX UCA\(^\textrm{JEDI}\) (France). J.A.M.-B. acknowledges support from CONACyT Fronteras Grant No. 425854 (Mexico).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Luis A. Razo-López. All authors contributed equally to writing and reviewing the paper.

Corresponding author

Correspondence to J. A. Méndez-Bermúdez.

Appendix A Deviations of the reflection amplitudes from the Gaussian circular ensemble

Appendix A Deviations of the reflection amplitudes from the Gaussian circular ensemble

Fig. 9
figure 9

Average of the real and imaginary parts of the reflection at two different frequencies (\(\omega _1=50.262\) rad ns\(^{-1}\) and \(\omega _2=50.268\) rad ns\(^{-1}\)) as a function of the ratio \(L/\ell \). Blue and orange dots correspond to \(\ell =57634\) cm and 214082 cm, respectively

Fig. 10
figure 10

Chi-square test values as a function of the ratio \(L/\ell \) to test the Gaussian distribution of the real and imaginary parts of the reflection at two frequency values. Blue and orange dots correspond to \(\ell = 57634\) cm and 214082 cm, respectively. The dashed line indicate the critical value \(\chi ^2_c =31.41\) which corresponds to the level of significance \(\alpha \) = 0.05 with 20 degrees of freedom

In the main text we have assumed that the reflection amplitudes are complex Gaussian random variables in the ballistic regime. Here we quantify the range of validity of this assumption as a function of the ratio \(L/\ell \). We perform chi-square goodness of fit tests to determine whether the real and imaginary parts of the reflection amplitudes follow a Gaussian distribution and the distribution of \(\tau _r\) is described by Eq. (3), in the main text.

First, we have found that the expectation values that define the circular symmetry, \(E[\textrm{Re}(r_1)]=E[\textrm{Im}(r_1)]=E[\textrm{Re}(r_1 r_2)]=E[\textrm{Im}(r_1 r_2)]=0\), of the reflections are preserved even for values of \(L \sim \ell \), as it can be seen in Fig. 9.

However, the chi-square goodness of fit reveals that the reflection amplitudes are no longer described by a Gaussian distribution as L approaches \(\ell \). In Fig. 10, we show the values of \(\chi ^2\) of the real and imaginary parts of the reflection at two different frequencies and two values of the mean free path as function of the system length. The \(\chi ^2\) values are obtained from 1000 samples and the data is grouped into 21 histogram classes. We obtained 1000 values of \(\chi ^2\) for each value of \(L/\ell \). We thus plot the average value \(\langle \chi ^2 \rangle \). The horizontal dashed lines in Fig. 10 indicate the \(\chi ^2\) critical value with 20 degrees of freedom and level of significance \(\alpha \) = 0.05. As it can be seen, the \(\chi ^2\) values are within the acceptance level up to \(L/\ell \sim 10^{-1}\).

It is thus expected that for systems with \(L \sim \ell \), the distribution of the time delay in reflection would not be well described by Eq. (3) in the main text. Indeed, we have performed chi-square tests for the distribution of \(\tau _r\). In Fig. 11, the values of the chi-square goodness of fit indicate that the numerical distributions of \(\tau _r\) are well described by Eq. (3) in the main text up to \(L/\ell \sim 10^{-1}\).

Fig. 11
figure 11

Chi-square test values as a function of the ratio \(L/\ell \) to test the agreement of the numerical and the expected (Eq. (3)) distribution of \(\tau _r\). Blue and orange dots correspond to \(\ell =57634\) cm and 214082 cm, respectively. The dashed line indicates the critical value \(\chi ^2_c =31.41\) which corresponds to the level of significance \(\alpha \) = 0.05 with 20 degrees of freedom

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razo-López, L.A., Méndez-Bermúdez, J.A. & Gopar, V.A. Time delay in 1D disordered media with high transmission. Eur. Phys. J. B 95, 188 (2022). https://doi.org/10.1140/epjb/s10051-022-00448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00448-0

Navigation