Skip to main content
Log in

Pseudogap Mott-phase in cuprate superconductors: a Hartree–Fock study with limited next-nearest-neighbor hopping

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the pseudogap phase of cuprate superconducting systems in a Hartree–Fock approach to the Hubbard Hamiltonian with an extra competing next-nearest-neighbor hopping term of energy \(t_2\) along the nodal directions of the sublattice Brillouin zone. A maximum pseudogap energy of 101.08 meV is obtained at the nodal points of the Fermi surface in the half-filling antiferromagnetic Mott insulating state, in good agreement with the experimental result for the La\(_2\)CuO\(_4\) compound on which our model parametrization is based. By doping the half-filled system either with holes or electrons, we observe the formation of pocket regions near the Fermi surface with low density of states at the nodes and antinodes, respectively. Remarkably, the pseudogap closes down at the critical hole and electron doping concentrations \(x_h^* = 0.20\) and \(x_e^* = 0.17\), also in fine agreement with the experimental values of the cuprate systems La\(_{2-x}\)Sr\(_{x}\)CuO\(_{4}\) and Nd\(_{2-x}\)Ce\(_{x}\)CuO\(_{4}\), which have the same CuO\(_{2}\)-plane structure at half-filling consistent with the fixing of our model parameters. By nullifying the next-nearest-neighbor hopping energy, \(t_2 = 0\), no pseudogap emerges. These findings suggest that limiting the electron dispersion along the nodal directions that connect contiguous Cu-sites in the same sublattice, combined with a significant on-site Coulomb repulsion, may play a relevant role to the opening of the pseudogap associated with filled or partially filled Mott states in cuprate compounds.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data can be requested directly to the authors.]

References

  1. J.G. Bednorz, K.A. Müller, Z. Phys. B Condens. Matter 64, 180 (1986)

    Article  ADS  Google Scholar 

  2. P.W. Phillips, L. Yeo, E.W. Huang, Nat. Phys. 16, 1175 (2020)

    Article  Google Scholar 

  3. H. Alloul, T. Ohno, P. Mendels, Phys. Rev. Lett. 63, 1700 (1989)

    Article  ADS  Google Scholar 

  4. J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, Phys. Rev. Lett. 71, 1740 (1993)

    Article  ADS  Google Scholar 

  5. D.S. Marshall, D.S. Dessau, A.G. Loeser, C.H. Park, A.Y. Matsuura, J.N. Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik, W.E. Spicer, Z.-X. Shen, Phys. Rev. Lett. 76, 4841 (1996)

    Article  ADS  Google Scholar 

  6. A.G. Loeser, Z.-X. Shen, D.S. Dessau, D.S. Marshall, C.H. Park, P. Fournier, A. Kapitulnik, Science 273, 325 (1996)

    Article  ADS  Google Scholar 

  7. N.F. Mott, Rev. Mod. Phys. 40, 677 (1968)

    Article  ADS  Google Scholar 

  8. S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Béard, D.A. Bonn, W.N. Hardy, R. Liang, N. Doiron-Leyraud, L. Taillefer, C. Proust, Nature 531, 210 (2016)

    Article  ADS  Google Scholar 

  9. N. Doiron-Leyraud, O. Cyr-Choiniere, S. Badoux, A. Ataei, C. Collignon, A. Gourgout, S. Dufour-Beauséejour, F.F. Tafti, F. Laliberté, M.-E. Boulanger, M. Matusiak, D.A. Graf, M. Kim, J. Zhou, N. Momono, T. Kurosawa, H. Takagi, L. Taillefer, Nat. Commun. 8, 2044 (2017)

    Article  ADS  Google Scholar 

  10. F. Boschini, M. Zonno, E. Razzoli, R.P. Day, M. Michiardi, B. Zwartsenberg, P. Nigge, M. Schneider, E.H. da Silva Neto, A. Erb, S. Zhdanovich, A.K. Mills, G. Levy, C. Giannetti, D.J. Jones, A. Damascelli, npj Quantum Mater. 5, 1 (2020)

    Article  ADS  Google Scholar 

  11. T.D. Stanescu, P. Phillips, Phys. Rev. Lett. 91, 017002 (2003)

    Article  ADS  Google Scholar 

  12. N. Karchev, Phys. Rev. B 57, 10913 (1998)

    Article  ADS  Google Scholar 

  13. M. Frachet, I. Vinograd, R. Zhou, S. Benhabib, S. Wu, H. Mayaffre, S. Kraemer, S.K. Ramakrishna, A. Reyes, J. Debray, T. Kurosawa, N. Momono, M. Oda, S. Komiya, S. Ono, M. Horio, J.-H. Chang, C. Proust, D. Leboeuf, M.H. Julien, Nat. Phys. 16, 1064 (2020)

    Article  Google Scholar 

  14. A. Cabo-Bizet, A.C.M. de Oca, Phys. Lett. A 373, 1865 (2009)

    Article  ADS  Google Scholar 

  15. A. Cabo-Bizet, A.C.M. de Oca, Symmetry 2, 388 (2010)

    Article  Google Scholar 

  16. V.M.M. Alvarez, A. Cabo-Bizet, A.C.M. de Oca, Int. J. Mod. Phys. B 28, 1450146 (2014)

    Article  Google Scholar 

  17. A.C.M. de Oca, N.H. March, A. Cabo-Bizet, Int. J. Mod. Phys. B 28, 1450027 (2014)

    Article  Google Scholar 

  18. Y. Vielza, A.C.M. de Oca, Rev. Cuba. Fis. 31, 75 (2014)

    Google Scholar 

  19. H.-C. Jiang, T.P. Devereaux, Science 365, 1424 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. P.W. Anderson, Phys. Rev. 115, 2 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  21. L.F. Mattheiss, Phys. Rev. Lett. 58, 1028 (1987)

    Article  ADS  Google Scholar 

  22. C.Y. Chen, R.J. Birgeneau, M.A. Kastner, N.W. Preyer, T. Thio, Phys. Rev. B 43, 392 (1991)

    Article  ADS  Google Scholar 

  23. C.Y. Chen, N.W. Preyer, P.J. Picone, M.A. Kastner, H.P. Jenssen, D.R. Gabbe, A. Cassanho, R.J. Birgeneau, Phys. Rev. Lett. 63, 2307 (1989)

    Article  ADS  Google Scholar 

  24. T. Yoshida, X.J. Zhou, K. Tanaka, W.L. Yang, Z. Hussain, Z.-X. Shen, A. Fujimori, S. Sahrakorpi, M. Lindroos, R.S. Markiewicz, A. Bansil, S. Komiya, Y. Ando, H. Eisaki, T. Kakeshita, S. Uchida, Phys. Rev. B 74, 224510 (2006)

    Article  ADS  Google Scholar 

  25. J.M. Ginder, M.G. Roe, Y. Song, R.P. McCall, J.R. Gaines, E. Ehrenfreund, A.J. Epstein, Phys. Rev. B 37, 7506 (1988)

    Article  ADS  Google Scholar 

  26. T. Timusk, B. Statt, Rep. Progr. Phys. 62, 61 (1999)

    Article  ADS  Google Scholar 

  27. A. Fujimori, A. Ino, T. Yoshida, T. Mizokawa, M. Nakamura, C. Kim, Z.-X. Shen, T. Kakeshita, H. Eisaki, S. Uchida, Phys. C 341–348, 2067 (2000)

    Article  ADS  Google Scholar 

  28. E.C. Marino, R.O. Corrêa, R. Arouca, L.H.C.M. Nunes, V.S. Alves, Supercond. Sci. Technol. 33, 035009 (2020)

    Article  ADS  Google Scholar 

  29. N.P. Armitage, F. Ronning, D.H. Lu, C. Kim, A. Damascelli, K.M. Shen, D.L. Feng, H. Eisaki, Z.-X. Shen, P.K. Mang, N. Kaneko, M. Greven, Y. Onose, Y. Taguchi, Y. Tokura, Phys. Rev. Lett. 88, 257001 (2002)

    Article  ADS  Google Scholar 

  30. H. Matsui, T. Takahashi, T. Sato, K. Terashima, H. Ding, T. Uefuji, K. Yamada, Phys. Rev. B 75, 224514 (2007)

    Article  ADS  Google Scholar 

  31. M.V. Kartsovnik, T. Helm, C. Putzke, F. Wolff-Fabris, I.B. Sheikin, S. Lepault, C. Proust, D. Vignolles, N. Bittner, W. Biberacher, A. Erb, J. Wosnitza, R. Gross, New J. Phys. 13, 015001 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

YV, MDCF, and EPR thank the financial support from CNPq, CAPES and FACEPE (Brazilian agencies). ACMO acknowledges the support from the OEA, ICTP Network N-09.

Author information

Authors and Affiliations

Authors

Contributions

YV and ACMO initiated the solution to the problem. YV formulated the one-band model, designed the code, and performed the numerical analysis based on the method solution presented by ACMO. YV also worte the first version of the manuscript. MDCF and EPR participated on the discussion of the results and writing of the final version of the manuscript.

Corresponding author

Correspondence to E. P. Raposo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vielza, Y., de Oca, A.C.M., Coutinho-Filho, M.D. et al. Pseudogap Mott-phase in cuprate superconductors: a Hartree–Fock study with limited next-nearest-neighbor hopping. Eur. Phys. J. B 95, 33 (2022). https://doi.org/10.1140/epjb/s10051-022-00298-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00298-w

Navigation